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Abstract:
3D Object Localization has emerged as one of the piv‐
otal challenges in Machine Vision tasks. In this paper,
we proposed a novel 3D object localization method,
leveraging a blend of deep learning techniques primarily
rooted in object detection, post‐image processing, and
pose estimation algorithms. Our approach involves 3D
calibration methods tailored for cost‐effective industrial
robotics systems, requiring only a single 2D image input.
Initially, object detection is performed using the You Only
Look Once (YOLO) model, followed by an R‐CNN model
for segmenting the object into two distinct parts, i.e.,
the top face and the remaining parts. Subsequently, the
center of the top face serves as the initial positioning
reference, refined through a novel calibration algorithm.
Our experimental results indicate a significant enhance‐
ment in localization accuracy, showcasing the method’s
efficacy in reducing localization errors broadly across
various testing scenarios. We have also made the code
and datasets openly accessible to the public at (https:
//github.com/NguyenCanhThanh/MonoCalibNet)

Keywords: Camera Calibration, Object Localization,
Machine (Robot) Vision System, Industrial Robotics

1. Introduction
The rapid advancement of imaging sensors over

recent decades has paved the way for a plethora
of intelligent perception algorithms [1, 2]. Leverag‐
ing these capabilities, vision technology has made
signiϐicant strides in various ϐields, including space
robotics [3], robot manufacturing, rapid object detec‐
tion, and tracking. Industrial Robot Vision (IRV),
which integrates computer vision into industrial man‐
ufacturing processes, presents a nuanced approach
compared to traditional computer vision methodolo‐
gies. Typically, robot vision systems prioritize tasks
such as harvesting [4], human‐robot interaction [5],
and robot navigation [6]. These systems ϐind appli‐
cation across a spectrum of areas, including complex
system part identiϐication, defect inspection, Opti‐
cal Character Recognition (OCR) reading, 2D code
reading, piece counting, and dimensional measure‐
ment [7]. Figure 1 illustrates a typical industrial robot
vision system conϐiguration, comprising fundamen‐
tal components such as cameras and control systems
(e.g., Robots, PLCs). Additional features like illumina‐
tion, user interaction, data storage, and remote control

are gradually integrated to improve system efϐiciency.
Object images captured are typically subjected to pre‐
processing, segmentation, and feature extraction on a
server. Controlled lighting conditions and ϐixed cam‐
era positions ensure the prominence of critical fea‐
tures, while the control system receives task execution
instructions from the server.

Camera calibration is indispensable in robot
vision systems to ensure precise object location and
accurate measurements [8]. However, the process
is highly susceptible to environmental changes,
encompassing variations in lighting, temperature,
and humidity, potentially introducing inaccuracies by
impacting intrinsic and extrinsic parameters. Despite
efforts to precisely estimate camera parameters,
real‐world complexities such as lens distortions and
non‐linearities may not be fully accounted for, leading
to calibration inaccuracies. Notably, challenges arise
when the object is not directly under the camera,
resulting in an incorrect prediction of the object’s
center relative to the reference point. To mitigate
these challenges, two primary approaches are
considered: i) optimization of intrinsic parameters
and ii) recognition of 3D objects to estimate the
center point. Numerous algorithms have been
developed to obtain intrinsic parameters for imaging
sensors [9–11]. Intrinsic calibration typically involves
a camera that observes anchor points in a calibration
pattern, with commonly used patterns including
checkerboards [12], coplanar circles [13, 14], and
AprilTags [15]. Traditional calibration methods, such
as those supported by OpenCV [16] andMATLAB [17],
have become commonplace, leveraging the advantage
of calibration toolboxes. However, deploying these
approaches in factory settings proves challenging, as
they are susceptible to noise and artifacts that can
degrade calibration performance.

For industrial vision systems, several techniques
for 2D camera calibration have been introduced
to achieve precise object localization. Brown’s
Plumb Line method [18], an early notable approach,
addresses the lens asymmetry issues encountered
during manufacturing. This method requires the
determination of 10 parameters and achieves high
accuracy, with deviations as low as ±0.5𝑚𝑚 at a
distance of 2𝑚.
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Figure 1. Overview of the industrial robot vision system

Innovations by Clarke, Fryer and Chen [19] have
adapted thismethod to usewith CCD sensors, enhanc‐
ing efϐiciency. Lu and Chuang [20] utilized a ϐlat moni‐
tor on which they drew lines and then estimated the
projection between the image plane and the mon‐
itor plane through multiple shots to calibrate the
camera. The Two‐Stage method [21–23] focuses on
real‐time calibration using black squares on a white
background, achieving uncertainties around±1𝑚𝑚 at
2𝑚. Direct Linear Transformation (DLT)‐based meth‐
ods [24–27] simplify calibration models and have
beenwidely adopted. However, these approaches tend
to fail in the case of localizing 3D‐shaped objects. Due
to their 3D natural shape, the locations determined
by these calibrationmethods are the locations of their
projections on the image rather than their true spatial
positions. Consequently, the error distance to the real
location of the objects remains signiϐicant. Zhang’s
technique [28], requiring only a planar pattern, offers
ϐlexibility with quicker application in industrial con‐
texts, albeit with slightly higher uncertainties. Beyond
these, researchers have tailored calibration methods
for speciϐic applications, such as high‐speed tensile
testing machines and unmanned vehicle guidance,
providing unique insights and experimental results.
However, these approaches tend to fail in the case
of localizing 3D‐shaped objects. Building upon foun‐
dational studies such as Siddique et al. [29], who
explored 3D object localization using 2D estimates
for computer vision applications, our work seeks to
advance these concepts by integrating more sophis‐
ticated calibration methods and deep learning tech‐
niques for improved accuracy and efϐiciency in indus‐
trial settings.

Due to their 3D natural shape, the location deter‐
mined by calibration methods is in fact the location
of their projections on the image instead of their real
location. Therefore, the error distance to the real loca‐
tion of the objects still remains. In addition, Xiem
HoangVan and Nam Do [30] introduced a machine
learning – regression‐basedmethod for improving the
accuracy of 3D object localization. Our method is cre‐
ated based on mathematical modeling of 3D objects
and their projected image in the 2D plane and is
followed by a regression‐based algorithm to achieve
model parameters.

In this paper, we proposed a novel approach (M‐
Calib) with the following contributions:
1) We validated the proposedwork in rigorous exper‐

iments using a checkerboard. The results show
that our approach outperforms the previous in
estimation accuracy.

2) We propose an efϐicient 3D localization method
designed to accurately calculate the translation
vector between the calibration center target and
the initialized center point with sub‐pixel localiza‐
tion accuracy. This method demonstrates robust‐
ness to noise, ensuring reliable performance in
various conditions.

3) We provide the source code of M‐Calib to the
research community, offering an easy‐to‐use cali‐
bration toolbox speciϐically tailored for monocular
cameras. This resource is openly accessible at: ht
tps://github.com/NguyenCanhThanh/MonoCal
ibNet, facilitating further research and application
development in the ϐield.
The remainder of this paper is organized as fol‐

lows: Section 2 delves into the intricacies of the prob‐
lem statement, offering a comprehensive understand‐
ing of the challenges at hand.
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Figure 2. Illustration of industrial robot vision system:
the green point is the initialized estimate center point,
and the red point is the actual center point

We unveil our novel method for isometric ϐlat
3D object localization, elucidating the deep learning
methodologies employed and elucidating the proce‐
dural steps in Section 3. Section 4 presents the exper‐
imental setup and evaluates the performance of our
proposed method using relevant metrics. Finally, Sec‐
tion 5 concludes the paper, summarizing the key ϐind‐
ings, discussing potential future research directions,
and emphasizing the signiϐicance of our contributions.

2. Problem Statement
The problem addressed in this study lies at the

intersection of machine vision and 3D object local‐
ization within industrial robot vision systems. While
conventional 2D camera calibration methods, such
as Brown’s Plumb Line Method and Tsai’s Two‐Stage
Method, have proven effective for achieving high accu‐
racy in object localization, their limitations become
evidentwhen confrontedwith 3D‐shaped objects. The
inherent challenge arises from the fact that these
methods determine object locations based on their
projections onto the 2D image plane, resulting in inac‐
curacies in representing the true 3D positions. This
discrepancy is especially pronounced in industrial
contextswhereprecise object localization is crucial for
tasks such as robotic automation, and quality control.
Figure2 illustrates the challengeswhenestimating the
center of 3D objects. Under the inϐluence of optical
projection, the initial estimated center position (green
point) often tends to deviate from the actual center
(red point) position. To address this gap, we propose a
novel approach, M‐Calib, leveraging efϐicient 3D local‐
ization techniques to overcome the limitations of tra‐
ditional 2D calibration methods. The objective is to
enhance accuracy, particularly in the localization of
isometric ϐlat 3D objects, thereby contributing to the
advancement of machine vision applications in indus‐
trial environments.

3. Proposed Method
Figure 3 presents a visual representation of our

proposed calibration methodology, centered around
the deliberate choice of a checkerboard as the calibra‐
tion pattern for two signiϐicant reasons.

Firstly, the checkerboard pattern demonstrates
robustness against scenes that are out of focus [31].
Secondly, the features extracted from the checker‐
board offer a straightforward deϐinition of the original
coordinate, contrasting with asymmetric circle pat‐
terns, where features are more suitable for motion
determination. The checkerboard pattern plays a piv‐
otal role in precisely determining the object’s position
in the calibration process. As the monocular cameras
sweep the calibration pattern, known as𝑂𝑟 corner, we
leverage the You Only Look Once (YOLO) model [32],
a state‐of‐the‐art object detection model, to identify
objects within the camera’s ϐield of view. Once the
ϐixed original coordinate is deϐined, sub‐pixel local‐
ization accuracy is crucial for extracting the image
centers of the calibration targets to optimize sensor
calibration. This process is detailed in Section 3.1.
However, owing to the direction of light, the object’s
position may drift away from the actual center. To
address this, we introduce a novel calibration method
comprising two parts. Initially, we segment the object
into the upper plane (𝑆𝑢) and the lower plane (𝑆𝑙), as
discussed in Section 3.2, utilizing the Bilateral ϐiltering
algorithm to eliminate noise. Subsequently, we deter‐
mine the center of the upper plane (𝑃𝑢) and employ
an edge detection algorithm to extract the edge (𝐸𝑜)
of the lower part. This edge (𝐸𝑜) is then divided into
two main border lines: the upper line (𝐸𝑢) and the
lower line (𝐸𝑙). The translation vector (T) from (𝐸𝑢) to
(𝐸𝑙) is calculated, as detailed in Section 3.3. Finally, the
estimated object position is computed by shifting the
center of the upper part (𝑃𝑢) following the translation
vector (T)with a magnitude of 1/2.

3.1. Object Detection

In determining the precise position of the object,
we initiate the process by establishing real‐world
coordinates through the capture of a checkerboard
image, enabling the identiϐication of its corners. Sub‐
sequently, for each object present in the image, we
leverage an advanced object detection method to dis‐
cern their respective image coordinates. In the context
of detecting checkerboard corners, we establish the
correlation between the image coordinates and their
corresponding real‐world coordinates. Notably, the
relationship between distances in images and their
counterparts in the real world is not always linear due
to distortion. Figure 4 delineates the sequential steps
employed to ascertain the initial object position:
1) Detect Checkerboard Edges and Corners: Utilizing

the Hough transformation, we identify checker‐
board edges and the coordinates of their intersec‐
tions, namely, checkerboard corners, as depicted in
Figure 4a.

2) Select Fixed Real‐World Coordinate: Choose a
ϐixed real‐world coordinate in pixel image space,
denoted as 𝑂𝑟 = ൣ𝑥0 𝑦0൧

𝑇 .
3) Estimate Object Center Position: Employing object

detection, estimate the center position in pixel
image space, represented as 𝑃 = ൣ𝑥 𝑦൧𝑇 .
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Figure 3. A block diagram of our proposed calibration method. The translation vector between the initialized estimate
center point (green point), and the calibration center point (red point) is calculated based on deep learning, and our
novel calibration method

(a) Checkerboard detection (b) Object detection (c) Initial object position

Figure 4. The progress of the calculation of the object position in the real‐world coordinate

4) Calculate Object Position in Real‐World Coordi‐
nates: Compute the object’s position in real‐world
coordinates using the formula 𝑃𝑟 = (𝑃 − 𝑂𝑟)𝑟,
where 𝑟 signiϐies the average ratio between the
length in pixels and the length in the real world of
each cell in the checkerboard pattern.

3.2. Object segmentation

While utilizing the checkerboard calibration
method to estimate the location of objects proves to
be straightforward and readily applicable in industrial
settings, its efϐicacy diminishes signiϐicantly when
dealingwith 3D‐shaped objects. In instances involving
such objects, the bounding box generated through
deep learning methods may not align accurately with
the true object location.

Speciϐically, the coordinates of the bounding box’s
center are unlikely to correspond to the actual cen‐
ter of the object within the resultant image. It’s cru‐
cial to note that the bounding box’s center can accu‐
rately represent the object’s center only if the object
is precisely positioned at the center of the camera’s
projection onto the ϐloor. To address this limitation,
we employ a convolutional neural network (CNN)‐
based object segmentation approach to divide objects,
detected in Section 3.1, into two distinct planes. This
segmentation involves using the upper plane 𝑆𝑢 to
establish the initial center of the object, followed by
noise reduction and edge extraction from the lower
plane.
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The initial step involves applying a Bilateral ϐilter‐
ing operation, which can be expressedmathematically
as:

𝐼′(𝑝) = 1
𝑊𝑝

෍
𝑞∈Ω

𝐼(𝑞)⋅𝐺𝜎𝑠(||𝑝−𝑞||)⋅𝐺𝜎𝑟(||𝐼(𝑝)−𝐼(𝑞)||)

(1)
where:
‐ 𝐼′(𝑝) is the ϐiltered intensity at pixel 𝑝.
‐ 𝑊𝑝 is the normalization term.
‐ 𝐼(𝑞) is the intensity at pixel 𝑞.
‐ 𝐺𝜎𝑠 is the spatial Gaussian kernel with standard
deviation 𝜎𝑠 .

‐ 𝐺𝜎𝑟 is the range Gaussian kernel with standard devi‐
ation 𝜎𝑟 .

‐ Ω is the spatial neighborhood of the pixel 𝑝.
Here, 𝑘 is the size of the kernel, and 𝜎 is the standard
deviation of the Gaussian distribution.

After that, the edge detector includes gradient
computation, non‐maximum suppression, and edge
tracking by hysteresis. The magnitude of the gradient
(𝐺) and the gradient direction (𝜃) are calculated as
follows:

𝐺(𝑖, 𝑗) = ට𝐺𝑖(𝑖, 𝑗)2 + 𝐺𝑗(𝑖, 𝑗)2 (2)

𝜃(𝑖, 𝑗) = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝐺𝑗(𝑖, 𝑗)
𝐺𝑖(𝑖, 𝑗)

) (3)

where 𝐺𝑖 and 𝐺𝑗 are the partial derivatives of the
image. After obtaining the gradient magnitude, non‐
maximum suppression is applied to thin the edges.
Finally, edge tracking by hysteresis involves setting
two thresholds, 𝑇ℎ𝑖𝑔ℎ and 𝑇𝑙𝑜𝑤 . Any edge pixel with a
gradientmagnitude above𝑇ℎ𝑖𝑔ℎ is considered a strong
edge, and pixels connected to strong edges and with a
magnitude above 𝑇𝑙𝑜𝑤 are considered weak edges.

Then we divide the edge into two main border
lines: the upper line (𝐸𝑢) and the lower line (𝐸𝑙). The
upper line is the contact line between the two planes
𝑆𝑢 and 𝑆𝑙 , and the lower line is the boundary of the
lower plane 𝑆𝑙 . Figure 5 illustrates the progress of
object segmentation and edge extraction.
3.3. Calibration Method

We introduce a calibration technique designed for
object position calibration. Upon completion of the
object segmentation and edge extraction processes,
we obtain crucial components: the initial position of
the object (center of the upper plane 𝑆𝑢), the upper
line 𝐸𝑢 , and the lower line 𝐸𝑙 . The translation vector
𝑉𝑢𝑙 is then calculated using Algorithm 1 to predict the
ϐinal position of the object by shifting the initial point
according to 𝑉𝑢𝑙 . In this process, each point on the
upper line 𝐸𝑢 calculates its distance to the lower line
𝑆𝑙 , determining the smallest vector length. The visual‐
ization results are depicted in Figure 6a. Subsequently,
the translation vector 𝑉𝑢𝑙 is deϐined as the vector with
themaximum lengthwithin the set of distance vectors
for each point, as illustrated in Figure 6b.

Algorithm 1: Estimate Translation Vector
Input: 𝒫𝑢 = 𝐸𝑢1 , 𝐸𝑢2 , … , 𝐸𝑢𝑁

𝒫𝑙 = 𝐸𝑙1 , 𝐸𝑙2 , … , 𝐸𝑙𝑀
𝑁 is the number of points in line 𝐸𝑢
𝑀 is the number of points in line 𝐸𝑙

Output: Translation vector: 𝑉𝑢𝑙
Index point in line 𝐸𝑢: 𝑖𝑛𝑑𝑢
Index point in line 𝐸𝑙: 𝑖𝑛𝑑𝑙

begin:
𝑖 ← 0 ;
𝑗 ← 0 ;
𝑖𝑛𝑑𝑢 , 𝑖𝑛𝑑𝑙 ← 0 ;
𝒟𝐸𝑢𝐸𝑙 ← 0; ▷ The magnitude of the
translation vector
while 𝑖 < (𝑁 − 1) do

𝒟𝑖𝐸𝑙 ← +∞; ▷ The distance from a
point to a line
while 𝑗 < (𝑀 − 1) do

Calculate the distance between two
points ൫𝒫𝑢𝑖 = (𝑥𝑢𝑖 , 𝑦𝑢𝑖)൯ and
൫𝒫𝑙𝑗 = (𝑥𝑙𝑗 , 𝑦𝑙𝑗)൯ based on (4):

𝒟 ← ට(𝑥𝑢𝑖 − 𝑥𝑙𝑗)2 + (𝑦𝑢𝑖 − 𝑦𝑙𝑗)2

(4)
if 𝒟𝑖𝐸𝑙 ≥ 𝒟 then

𝒟𝑖𝐸𝑙 ← 𝒟;
end
𝑗+ = 1;

end
if 𝒟𝐸𝑢𝐸𝑙 ≤ 𝒟𝑖𝐸𝑙 then𝒟𝐸𝑢𝐸𝑙 ← 𝒟𝑖𝐸𝑙 ;

𝑉𝑢𝑙 = ⃗𝒫𝑢𝑖𝒫𝑙𝑗 ;
𝑖𝑛𝑑𝑢 ← 𝑖;
𝑖𝑛𝑑𝑙 ← 𝑗;

end
𝑖+ = 1;

end
return 𝑉𝑢𝑙 , 𝑖𝑛𝑑𝑢 , 𝑖𝑛𝑑𝑙;

end

This calibration technique facilitates accurate
object positioning by accounting for the spatial
relationships between the upper and lower
components. However, the efϐicacy of Algorithm
1 can be compromised by suboptimal segmentations.
To mitigate this issue, we introduce Algorithm 2
as a solution. In essence, if the vector 𝑉𝑢𝑙 derived
from Algorithm 1 is accurate, then upon projecting
the upper line 𝐸𝑢 along the translation vector, the
distance between the resultant line ̂𝑆𝑢 and the lower
line 𝑆𝑙 should be approximately, or equal, to 0.

Leveraging this concept, we construct the set of
neighboring vectors 𝕍 by maintaining the initial point
of the vector 𝑉𝑢𝑙 unchanged and selecting 𝑘 neigh‐
boring points for the terminal point. Subsequently,
we project the upper line following each translation
vector in 𝕍 and choose the vector that results in the
smallest distance.
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(a) Input image (b) Segmentation (c) Bilateral filtering (d) Edge Extraction

Figure 5. The progress of object segmentation and edge extraction

(a) Point to line translation vector (b) Line to line translation vector

Figure 6. Illustration of the estimated translation vector

This novel algorithm serves to enhance the robust‐
ness of the calibration process against suboptimal seg‐
mentations, ensuring more reliable results.

4. Experimental Results
4.1. Experiment Setup

To evaluate the proposed method for estimating
the location of objects, we conducted experiments
using a vision systemwith a camera positioned above,
parallel to the ϐloor, and at a distance of 40𝑐𝑚. The
real‐world coordinates were deϐined using a checker‐
board pattern, where each square was measured 3 ×
3𝑐𝑚2. Further details about the experimental setup,
including hardware speciϐications, are provided in
Table 1. In our experiments, we used a speciϐic type of
object to evaluate the performance of our localization
algorithm. The object selected for this study is a stan‐
dard electrical charger, commonly found in house‐
holds and industrial settings. This object was chosen
due to its well‐deϐined shape and easily recognizable
features, which facilitate accurate detection and seg‐
mentation. The dimensions of this object are 4.5𝑐𝑚 ×
3.0𝑐𝑚×3.5𝑐𝑚. The dimensions, shape, and sharpness
of the localized object signiϐicantly impact the perfor‐
mance of the localization algorithm. The object’s well‐
deϐined edges and distinct features enable the deep
learning models to accurately detect and segment it
from the background. The size of the object ensures
that it is neither too small to be overlooked by the
detection model.

The rectangular shapewith ϐlat surfaces and sharp
edges facilitates precise boundary detection during
the segmentation process. The clear and distinct con‐
tours of the object enhance the segmentation accu‐
racy, leading to better calibration results.

The evaluation metrics employed for a compre‐
hensive assessment are Intersection over Union (IOU)
for object segmentation, Mean Average Precision
(mAP) for object detection, and the Euclidean metric
for geometric accuracy.

Metrics:We utilize a set of robustmetrics to assess
the performance of our proposed object localiza‐
tion method thoroughly. The Intersection over Union
(IOU)metric, pivotal in the object segmentationphase,
is deϐined as the ratio of the area of overlap (𝐴𝑜𝑙)
between predicted (𝐴𝑝𝑟𝑒𝑑) and ground truth (𝐴𝑔𝑡)
bounding boxes to the area of union (𝐴𝑢𝑛):

𝐼𝑂𝑈 = 𝐴𝑜𝑙
𝐴𝑢𝑛

= 𝐴𝑜𝑙
𝐴𝑝𝑟𝑒𝑑 + 𝐴𝑔𝑡 − 𝐴𝑜𝑙

(5)

The mean average precision (mAP) is utilized for
the object detection phase, calculated by integrating
the precision (𝑃) over the recall (𝑅) and the number
of classes𝑁 at various IOU thresholds:

𝑚𝐴𝑃 = 1
N

𝑁

෍
𝑖=0

𝐴𝑃 = 1
N

𝑁

෍
𝑖=0

න
1

0
𝑃(𝑅), 𝑑𝑅 (6)
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Algorithm 2: Translation Vector Correction
Input: 𝒫𝑢 = 𝐸𝑢1 , 𝐸𝑢2 , … , 𝐸𝑢𝑁

𝒫𝑙 = 𝐸𝑙1 , 𝐸𝑙2 , … , 𝐸𝑙𝑀
𝑁 is the number of points in line 𝐸𝑢
𝑀 is the number of points in line 𝐸𝑙
𝑉𝑢𝑙 , 𝑖𝑛𝑑𝑢 , 𝑖𝑛𝑑𝑙 ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1

Output: Translation vector: 𝑉𝑢𝑙
begin:

▷ Choose 𝑘 neighboring points of 𝒫𝑙𝑖𝑛𝑑𝑙
𝑖 ← −𝑘/2 ;
𝕍 ← {}; ▷ Set of translation vectors
while 𝑖 < 𝑘/2 do

𝑗 ← 𝑖𝑛𝑑𝑙 + 𝑖;
𝕍.𝑝𝑢𝑠ℎ𝑏𝑎𝑐𝑘൫ ⃗𝒫𝑢𝑖𝑛𝑑𝑢𝒫𝑙𝑗൯; ▷ Pushback
the neighboring vectors of 𝑉𝑢𝑙 into 𝕍

end
𝒟𝑚𝑖𝑛 ← +∞;
for 𝑗 = 0; 𝑗 < 𝑠𝑖𝑧𝑒(𝕍); 𝑗 + + do

𝒫̄𝑢 ← 𝒫𝑢 + 𝕍𝑖; ▷ Project upper line
following the translation vector
▷ Calculate the distance between 𝒫̄𝑢

and 𝒫𝑙
𝒟 ← 0;
𝑛 ← 0 ;
𝑚 ← 0 ;
while 𝑛 < (𝑁 − 1) do

while𝑚 < (𝑀 − 1) do
Calculate the distance 𝑑
between two points
൫ ̄𝒫𝑢𝑛 = ( ̄𝑥𝑢𝑛 , ̄𝑦𝑢𝑛)൯ and
൫𝒫𝑙𝑚 = (𝑥𝑙𝑚 , 𝑦𝑙𝑚)൯ based on
(4);
𝐷 ← 𝐷 + 𝑑;
𝑚+ = 1;

end
𝑛+ = 1;

end
if 𝒟𝑚𝑖𝑛 ≥ 𝒟 then

𝒟𝑚𝑖𝑛 ← 𝒟;
𝑉𝑢𝑙 ← 𝕍𝑗;

end
end
return 𝑉𝑢𝑙;

end

Table 1. Experiment setup details

Parameter Spec

Process Intel Xeon Processor with two
cores @ 2.3 GHz

GPU NVIDIA Tesla T4
RAM 13 GB
OS Ubuntu 20.04 LTS

Table 2. Performance comparison of various object
detection models

Algorithm mAP Pr Rc MS

RTMDet [37] 96.9% 94.5% 93.1% 52.3
MobileNet [35] 94.8% 93.8% 93.4% 4.6
Fast R‐CNN [34] 97.0% 93.4% 94.1% 12.9
Yolov3 [33] 96.3% 95.8% 95.7% 8.7
Yolov4 [36] 96.8% 96.6% 95.4% 60.0
Yolov7 [38] 97.1% 95.7% 93.1% 37.2
Yolov8 [39] 97.8% 95.5% 94.4% 11.1

Our 98.7% 98.6% 97.0% 7.0

The Euclidean metric assesses geometric accu‐
racy by calculating the Euclidean distance 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛
between the predicted ൫(𝑥𝑝𝑟𝑒𝑑 , 𝑦𝑝𝑟𝑒𝑑)൯ and true
൫(𝑥𝑡𝑟 , 𝑦𝑡𝑟)൯ object coordinates:

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = ට(𝑥𝑝𝑟𝑒𝑑 − 𝑥𝑡𝑟)2 + (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟)2 (7)

Datasets: We acquired three distinct datasets,
each corresponding to a speciϐic phase of our paper.
In the object detection phase, we amassed a collec‐
tion of 400 images captured from various object loca‐
tions. To ensure a comprehensive evaluation, we par‐
titioned this dataset into three subsets: a training set
comprising 60% of the data randomly selected, a vali‐
dation set with 30%, and a test set with the remaining
10%. Subsequently, in the object detection phase, we
gathered 5000 images from diverse object locations.
Tomaintain a robust evaluation approach,we split this
dataset into a training set (70% of the data randomly
selected), a validation set (20%), and a test set (10%).
Lastly, for the object localization phases, we gathered
60 images, distributed into 10 folds, each containing 6
images.
4.2. Object Detection and Object Segmentation Results

Table 2 presents the results of various detection
models evaluated in termsofmeanaverageprecision –
mAP, model size –MS (MB), precision – Pr, and recall –
Rc. The Yolov3 [33] model achieves a mAP of 90.0%
with amodel size of 8.7MB, accompanied by precision
and recall scores of 85.9% and 84.6%, respectively.
In contrast, the Fast R‐CNN [34] model demonstrates
superior performance with a mAP of 97.0% despite
a larger model size of 12.9 MB, achieving precision
and recall scores of 93.4% and 42.1%, respectively.
TheMobileNet [35] model offers amAP of 94.8%with
a relatively compact model size of 4.6 MB, achiev‐
ing precision and recall scores of 93.8% and 93.4%,
respectively. The Yolov4 [36] and RTMDet [37]models
exhibit competitive mAP scores of 96.8% and 96.9%,
respectively, with larger model sizes of 60.0 MB and
52.3MB. The Yolov7 [38] and Yolov8 [39] models can
achieve superior accuracy with a mAP of 97.1% and
97.8%, respectively, with a precision of 95.7% and
95.5%, and a recall of 93.1% and 94.4%, respectively.
Our proposed model outperforms the others with an
mAPof98.7%, precision of98.6%, and recall of97.0%.
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(a) Input image (b) Object detection (c) Segmentation (d) Calibiration result

Figure 7. Visualized examples of experimental results: figure (b): the orange point is the Yolo center, figure (d): dark red is
the upper part center. The vector created by the blue points is a translation vector; the light blue point is the correction
center

Additionally, our model exhibits a relatively com‐
pact size of 7.0 MB compared to other models, indi‐
cating its efϐiciency in terms of memory usage. These
results underscore the effectiveness and efϐiciency

of our proposed object detection model for accu‐
rately detecting objects in various scenarios, making
it well‐suited for practical deployment in real‐world
applications.
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Table 4. Performance comparison of various object
segmentation models

Algorithm mAP Pr Rc MS (MB)
Yolov5 [40] 98.7% 97.1% 96.2% 7.4
RCNN [41] 97.8% 98.1% 96.4% 16.8
Yolov7 [38] 99.0% 99.0% 97.8% 37.9
Yolov8 [39] 99.2% 98.7% 97.4% 11.8

Our 99.8% 99.1% 97.9% 28.9

A comparative analysis of various object segmen‐
tation models is presented in 4. Among the models
evaluated, Yolov5 [40] emerges as a strong contender,
showcasing a notable mAP@0.5 score of 98.7%, a
precision rate of 97.1%, and a recall rate of 96.2%.
These metrics indicate its robust ability to accurately
identify objectswithin imageswhilemaintaining a rel‐
atively compactmodel size of 7.4MB,making it an efϐi‐
cient choice for resource‐constrained environments.
In addition, Yolov7 [38] and Yolov8 [39] demonstrate
a commendable performance with highmAP scores of
99.0% and 99.2%, respectively, along with impressive
precision and recall values. However, what sets our
proposed model apart is its exceptional performance
across all metrics. With an outstanding mAP@0.5
score of 99.8%, precision rate of 99.1%, and recall
rate of 97.9%, our model surpasses all others in terms
of segmentation accuracy while maintaining a moder‐
ate model size of 28.9 MB. These results underscore
the efϐicacy of our segmentation model in accurately
delineating objects within images.

Figure 7 visually illustrates the experimental
results of our proposed method, including object
detection, object segmentation, and object calibra‐
tion. These visualizations provide a comprehensive
insight into the efϐicacy and accuracy of each phase
of our methodology. Object detection showcases the
ability of our model to accurately identify and local‐
ize objects within the scene, laying the foundation
for subsequent processing steps. Object segmentation
highlights the precision with which our algorithm
delineates the boundaries of detected objects, ensur‐
ing accurate localization and analysis. Finally, object
calibration visually demonstrates the reϐinement and
optimization of object positions based on real‐world
coordinates, validating the effectiveness of our cali‐
bration approach in enhancing spatial accuracy.
4.3. Object Localization Results

The experimental results in Table 3 offer quan‐
titative insights into the performance comparison
between our proposed method, the traditional
approach, and the Regression‐based method [30], our
previous method [30] (Regression‐based method).
Across multiple folds and samples, our method
consistently demonstrates superior performance in
terms of position error metrics.

Table 5. Processing time of our proposed method
(milliseconds)

Phase Processing Time

Object Detection 15 ± 2
Object Segmentation 40 ± 5
Object Calibration 300 ± 10

For instance, in Fold 1, Sample 1, the traditional
method yields position errors of Δ𝑥 = 9.69 mm and
Δ𝑦 = 5.51 mm, while our proposed method achieves
signiϐicantly lower errors of Δ𝑥 = 0.38mm and Δ𝑦 =
1.14 mm before correction, and Δ𝑥 = 0.95 mm and
Δ𝑦 = 0.76mm after correction.

The average position errors across all folds and
samples further highlight the effectiveness of our pro‐
posed method. On average, our method achieves posi‐
tion errors of Δ𝑥 = 1.12mm and Δ𝑦 = 0.94mm after
correction, compared to Δ𝑥 = 8.30 mm and Δ𝑦 =
8.96mmfor the traditionalmethod,which reduces the
position error by 87.64%. Similarly, the regression‐
based method yields average errors of Δ𝑥 = 1.43mm
and Δ𝑦 = 1.86 mm, indicating a noticeable improve‐
ment over the traditional approach but still inferior to
our proposed method.

These quantitative results underscore the signif‐
icant reduction in position errors achieved by our
proposed method compared to both traditional and
regression‐based approaches. The superior accuracy
and precision offered by our method are particularly
advantageous in applications where precise object
localization is paramount, such as robotic manipula‐
tion, augmented reality, and autonomous navigation
systems.

The processing time for each phase of our pro‐
posed method is summarized in Table 5. In the object
detection phase, our algorithm takes approximately
15 ± 2milliseconds to detect objects within the cam‐
era’s ϐield of view. Subsequently, during the object
segmentation phase, which involves segmenting the
detectedobjects into upper and lowerplanes, the algo‐
rithmalso requires around40±5milliseconds. Finally,
in the object calibration phase,where the precise posi‐
tion of the objects is determined based on the seg‐
mented data, the processing time remains consistent
at approximately 300±10milliseconds. This efϐicient
processing time across all phases underscores the
real‐time applicability and practical feasibility of our
proposed method for object localization in industrial
vision systems.

5. Conclusion
In conclusion, we have presented M‐Calib, a com‐

prehensive methodology for precise object localiza‐
tion and calibration leveraging advanced computer
vision techniques for industrial robot vision systems.
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Through the integration of advanced computer
vision techniques, including object detection, segmen‐
tation, and calibration, our proposed approach offers
a robust and accurate solution for determining the
real‐world positions of objects. Experimental results
demonstrate the effectiveness of our method in sig‐
niϐicantly reducing 87.65% position errors compared
to traditional approaches, thereby enhancing spatial
accuracy in industrial environments. Furthermore, the
computational efϐiciency of our method, as evidenced
byminimal processing times, underscores its practical
viability for real‐world deployment. Overall, our pro‐
posed methodology holds promise for a wide range of
industrial applications where precise object localiza‐
tion is essential, offering a reliable solution tooptimize
operational efϐiciency and enhancing productivity. In
the future, our aim is to exploremachine learning tech‐
niques for automatic calibration parameter adjust‐
ment and extend our methodology to support real‐
time dynamic object localization.
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