
Abstract:

1. Introduction

In this paper, the Bayesian model for bimodal sensory

information fusion is presented. It is a simple and biolo-

gical plausible model used to model the sensory fusion in

human’s brain. It is adopted into humanoid robot to fuse

the spatial information gained from analyzing auditory

and visual input, aiming to increase the accuracy of object

localization. Bayesian fusion model requires prior know-

ledge on weights for sensory systems. These weights can

be determined based on standard deviation (SD) of uni-

modal localization error obtained in experiments. The

performance of auditory and visual localization was tes-

ted under two conditions: fixation and saccade. The ex-

periment result shows that Bayesian model did improve

the accuracy of object localization. However, the fused

position of the object is not accurate when both of the

sensory systems were bias towards the same direction.
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Realizing audiovisual object localization in humanoid

robot is a challenging work. As the possible locations of

the object are computed based on image and sound inde-

pendently, the results need to be fused to form the ultimate

perceptions. This Sensory information fusion has the ad-

vantages of reducing uncertainties of the information,

providing information that is unavailable from single type

of sensor and causing the system to be fault tolerant [8]. In

years, researchers have developed sophisticated methods

for multisensory information fusion for robot. For exam-

ple, Yong-Ge Wu [10] proposed an information fu-

sion algorithm based on generalized Dempster-Shafer's

theory of evidence (DSTE). Their result shows that higher

accuracy is achieved when the vision evidence is depen-

dent which violate the basic assumption of DSTE. J.A.

Lopez-Orozco's [11] proposed an enhanced Kalman

filter multi-sensor fusion system that is used to calculate

the position and orientation of an autonomous mobile

robot. They focused on simplifying the Kalman filter

multi-sensor fusion to lower its computational cost and

solving the dependency on the selection of different sam-

pling period and assimilation waiting interval. Kentaro

Toyama's [12] developed a Markov dynamic net-

work model that integrates the analyses of multiple visual

tracking algorithm to enable better head tracking. Their

analysis shows that Bayesian system fusion usually out-

performs any of its constituent systems, often making

estimates close to the system estimate with the least error.

Futoshi Kobayashi's [13] proposed a Recurrent

Fuzzy Inference (RFI) with recurrent inputs and applied it

to a multi-sensor fusion system in order to estimate the

state of systems. The membership functions of RFI are

expressed by Radial Basis Function (RBF) with insen-

sitive ranges and the shape of the membership functions

can be adjusted by a learning algorithm. Lucy Y. Pao

[14] developed a multi-target tracking algorithm based on

Joint Probabilistic Data Association (JPDA) for use in

multi-sensor tracking situation. They found that the multi-

sensory data association probability is actually the pro-

duct of the single-sensor data association probability.

Instead of fusing spatial information of the object gai-

ned, several developed humanoid robot uses auditory in-

formation only as a guide for visual system. For example,

Carlos Beltrán-González [15] proposed a cross-

modal perceptual architecture that can segment object ob-

jects based on visual-auditory sensorial cues, by construc-

ting an associative sound-object memory and create visual

expectation using a sound recognition algorithm. In Hans-

H. Bothe’s paper [16], they described a hierarchi-

cally organized technical system performing auditory-

visual sound source localization and camera control. In

their fusion system, auditory maps that belongs to one

video interval is fused. Then, the resultant map is filtered

by three types of filters, and the results are fused again.

Finally, the fovea position of the object is calculated using

quadratic prediction. Hiromichi Nakashima [17]

proposed a learning model for sound source localization

through interactions between motion and audio-visual

sensing. The model consists of two modules, which are

a visual estimation module consisting of a three-layer per-

ceptron and an auditory estimation module consisting of

a neural network with a Look-Up-Table algorithm.

Different from fusion models discussed above, in the

field of neuroscience, recent researches [1-5] strongly

suggest that multisensory cues, especially spatial cues

may be combined in a much simpler statistically optimal

manner in the brain. For example, Paola Binda [2]

conducted test on human’s ability of localization of visual,

auditory and audiovisual stimulus during the time of fixa-

tion and saccade. They assumed that saccade has little

effect on auditory space perception and both auditory and

visual spatial cues are conditionally independent. They

showed that the result of fusion of auditory and visual spa-

tial cue can be well modeled by Bayes's theorem and the

precision of localization is better in multimodal presen-

tation compare to unimodal presentation. At the same

time, their result also showed that auditory signal becomes

more important for localization at the time of saccades,

suggesting that the visual signal has become transiently
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noisy, and therefore receives less weight. In order to adapt

this Bayesian model of multisensory data fusion into ro-

bot, the weights of all sensory systems under different

conditions such as fixation or saccade must be determi-

ned. This can be done by conducting experiment to mea-

sure the level of erroneous of them.

In this paper, we focus on adopting the Bayesian fu-

sion model into humanoid robot to fused spatial properties

of an object detected by visual and auditory sensors. We

also proposed a way to calculate weights of visual and au-

ditory system based on the error of localization obtained

through experiment, which is the main contribution of this

paper. In order to reduce complexity of calculation, only

azimuth position of the target object is considered.

The visual system of the robot locate the target object

based on its dominant color, determined using color seg-

mentation process that involve log-polar transformation,

temporal difference and hue-saturation (H-S) histogram.

The auditory system locate the target object using inter-

aural time difference (ITD), which is the difference in time

for the sound to reach the left and right microphone. ITD is

determined using generalized cross-correlation (GCC)

method performed in frequency domain. Note that unimo-

dal object localization refers to object localization using

only aidutory or visual system and bimodal object locali-

zation utilize information from both sensory system.

In section 2 of this paper, the Bayesian fusion model is

described. The description of humanoid robot, the experi-

ment and conclusion are available in section 3, 4 and 5,

respectively.
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2. Bayesian Fusion Model
In short, Bayes’ theorem can be described as a way of

converting one condition probability to other, by rewei-

ghting it with the relative probability of the two variables

[1]. In this paper, the weights of sensory system during

fixation and saccade were computed base on SD of locali-

zation error.

In order to derive the relationship between signal in-

puts, weights and the resultant output, let’s assume that the

independent sensor output is denoted by vector = ( , ,

... , ) and the object property (e.g. three-dimensional

position) is denoted by , so that is

the probability of sensor output being given that the ob-

ject property is , and is called the posterior pro-

bability of object property being given that the sensor

output is . In this particular application, can be

computed from data collected during tests, while

is the desired outcome. These two probabilities are related

by Bayes’theorem as follow [8]:

(1)

where the marginal probability and the prior proba-

bility are the unconditional probabilities of the sensor

output and object property being and respectively.

Then, assume that in the system there are sensors, which

give the following readings: and the

best estimate of the object property can be developed

using these sensors reading. This can be achieved by

using the likelihood estimate. In the likelihood estimate

is computed such that the following is maximized:
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It is usually easier to deal with the logarithm of the

likelihood than the likelihood itself, because the product

can be changed to the sum, and the term involving

exponents can be simplified. Let be the log-likeli-

hood function:

(3)

Assume that the reading from the sensors follow Gaus-

sian density function, so that is given by:

where is the variance-covariance matrix, denotes

the transpose, and denote the determinant. Now, the

expression for likelihood (Eq. 3) becomes:

The best estimate of can be found by differentia-

ting with respect to , equating the result to zero, and

computing the value of , as follows:

Consider a system that contains only two sensors and

let both and in Eq. 6 be scalar measurements and let

simply be the SD of localization error of the sensor, Eq. 6

is then becomes:

In our case, symbol is used to denote the azimuth

position, so that = be the best estimation of object azi-

muth position, = and be the visual and auditory

spatial information in azimuth plane computed by visual

and auditory system. Then, the Eq. 7 is rewritten as:

Clearly, Eq. 8 shows that result of bimodal localization

is actually the weighted sum of the results of two unimodal

localization, where the weight of visual and auditory

system ( and ) [2] are defined as:

and

Thus, Eq. 8 can be further simplified into
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relative to the head. The range of head’s motion was limi-

ted to 30 to the left and right. The sampling rate of the

program was 6 Hz and the eyes and ears of the robot share

the common center in horizontal plane.

(a)

(b)

Total of five tests were conducted in this experiment.

They are fixation test, 20 deg/sec saccade test, 30 deg/sec

saccade test, 60 deg/sec saccade test and condition specific

calibration saccade test. During fixation test, the robot’s

head and eyes were initially fixated towards the back-

ground at position (0 , -20 ) (elevation angle of 0o and

azimuth angle of -20 ; positive value indicates right and up

of the humanoid robot while negative value indicates left

and down). The head was then turned with 1o stepping and

fixate for 1 sec after each step, until it reach (0 , +20 ) and

back to (0 , -20 ). The test was repeated three times. Per-

ceived positions of auditory and visual stimulus were re-

corded each time the robot head fixated. During saccade

test, the neck was turned by three different angular speeds

(20 deg/sec, 30 deg/sec and 60 deg/sec). The robot head

was firstly fixate at (0 , -30 ). Once the tests start, the head

was turned between position (0 , +30 ) and (0 , -30 ) and

only the data that fell within the range (20 to the left and

right) were recorded. Each test was repeated 50 times in

order to minimize the influence of random hardware error

and the motion range was extended to 30 at both sides du-

ring sac-cade test to avoid obtaining data during saccade

onset and changes of direction of motion because images

was noisy during these conditions. After the results of the-

se saccade test were obtained, the robot system was reca-

librated based on the amount of error obtained during

60 deg/sec saccade test. Then, the condition specific cali-

°

° °

°

° °

° °

° °

° ° ° °

°

°

Fig. 2. (a) The robot facing forward which is the direction

of the red square and white noise and (b) top view of the

experiment setup, indicates the azimuth angle with res-

pect to head center (modified from [9]).

�

(11)

(12)

The humanoid robot used in the experiment is called E-

Bee, shown in Fig. 1. Its head consists of 5 degree of free-

dom (D.O.F) and is driven by servomotors. These servo-

motors are powered by a unit of D.C. power supply and are

control by a SSC-32 servomotor controller connected to

the computer. The computer contains an Intel Xeon E5335

Quad-core processor, 2 GB RAM, 100 Mbps network con-

troller, a standard 44.1kHz soundcard and a 128 MB gra-

phic card. A pair of Logitech Quickcam Express and a pair

of Sony ECM PC50 omni-directional microphones were

used in the robot to grab image and sound. The Linux base

asymmetric multiprocessing (AMP) system is equipped

with Intel open source computer vision library (OpenCV)

and Intel Integrated Performance Primitives (Intel IPP)

which contains C/C++ Compiler, Math Kernel Library and

Signal Processing Library.

In order to study the Bayesian model for sensory infor-

mation fusion and to compute the weight of visual and au-

ditory system during the time of fixation and saccade, tests

were conducted to obtain the SD of these two sensory sys-

tems. In these tests, only azimuth position of the stimulus

was considered. We assumed that error and sampling pe-

riod of auditory and visual system were independent and

time lag between visual and auditory signal can be ignored.

Background of image was a static color background in

green color, located in front of the humanoid robot, with

a distance of 60 cm from the eye-center, as shown in Fig. 2.

The visual stimulus was presented as a 2 cm x 2 cm red

square on the green background and the auditory signal

was presented as continuous white noise, played through

a normal speaker. Fluorescent light was used with no addi-

tional light source such as sun light. Due to hardware limi-

tation, the neck was turned relatively to the stimulus to

make the audiovisual stimulus move horizontally in the

image captured, instead of driving the stimulus to move

The predicted bimodal threshold is then given by

Clearly, according to Eq. 11, SD denotes the reliability

of the sensory system. A reliable sensory system with

lower SD will be assigned a larger weight and will become

more important in estimating the target’s properties under

certain condition (e.g. fixation and saccade).

�v,a

3. E-Bee the humanoid robot

4. Experiment

Fig . 1. E-Bee’s head.
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bration test was car-ried out by using similar setting with

60 deg/sec saccade test.

The robot head was assumed to turn with a constant

speed until the end of motion after a short time from sac-

cade onset and changes of direction of motion. The actual

azimuth position of robot head was estimated using a sim-

ple mathematic equation shown below:

(13)

where denote the azimuth position of the stimulus,

denote the angular speed and denote the time relative to

saccade onset of each turn.

Fig. 3 demonstrates the result of all five tests. The

result of fixation test indicates that during fixation, audi-

tory and visual localization was accurate with little error of

object localization. According to the results of 20 deg/sec,

30 deg/sec and 60 deg/sec saccade test, the error of unimo-

dal object localization increased as the angular speed of

robot head was increased. This is because the images cap-

tured were blur and not reliable during the time of saccade.

This phenomenon affected the result more and more signi-

� 

t

ficantly as the angular speed of the robot head increased,

especially during the time saccadic motion starts and du-

ring changes of direction of motion.

Table 1 and Fig. 4 summarize the calculated mean and

SD of the error of unimodal and bimodal object localiza-

tion. Table 1 also summarize the calculated weights of uni-

modal object localization under different conditions. The

bimodal threshold, was calculated by comparing the

result of bimodal localization with the ideal position, rather

than using Eq. 12. According to the results in Table 1, it is

clear that Bayesian model of sensory information fusion

did improve the accuracy of object localization as the mean

error of bimodal object localization were smaller then the

mean error of object localization by visual system at all

time. Also, during all three saccade tests, auditory system

has become more reliable as it carried lower error than

visual system. However, the results of object localiza-tion

by auditory system during all saccade tests were still less

reliable since they deviated greatly (2 to 7 ) from ideal

position throughout the tests. As a result, the result of

bimodal object localization was distorted greatly when

both sensory systems were not accurate. This has clearly

demonstrates the disadvantage of Bayesian model that,

during the absence of reliable sensory system such as

auditory system in human [2], the result of Bayesian model

could become inaccurate as well.

�

� �

v,a
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= (30 )n t

n =
�1 for motion from left to right

1 for motion from right to left

(a) (b)

(c) (d)

Fig. 3. (a) Demonstrations of a portion of the results of

unimodal and bimodal localization during fixation test.

(b) (c) (d) Demonstrations of the result of 20 deg/sec,

30 deg/sec and 60 deg/sec saccade test, respectively. (e)

The result of condition specific calibration saccade test.

(adopted from [9]).

(e)

Fixation Test for Unimodal and Bimodal Localization 20deg/sec Saccade Test

Condition Specific Calibration Saccade Test

60deg/sec Saccade Test30deg/sec Saccade Test
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Table 1. Comparison of mean and SD of error of localization of auditory, visual and Bayesian audiovisual localization, as well

as the weight of unimodal localization [9].

Test

Fixation

20deg/sec saccade

30deg/sec saccade

60deg/sec saccade

Condition specific

calibration saccade

Visual localizationAuditory localization

SD

( )

0.8732

2.5389

3.3786

6.9261

2.3324

�a

Weight

( )

0.6897

0.4636

0.6584

0.7239

0.7132

wa

Mean

( )

0.7159

1.9910

2.7428

6.6249

1.9197

xa

SD

( )

1.3020

2.3605

4.6905

11.2159

3.6779

�v

Weight

( )

0.3103

0.5364

0.3416

0.2761

0.2868

wv

Mean

( )

0.7683

2.0713

4.2705

10.7557

2.9261

xv

SD

( )

0.7905

2.1015

3.6338

7.9769

2.3861

�v,a

Mean

( )

0.6341

1.7941

3.1689

7.7643

1.9492

xv,a

Bayesian audiovisual

localization

� � �

(a) (b)

(c) (d)
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Hence, in order to overcome this weakness of Bayesian

model, condition specific calibration was proposed. After

the condition specific calibration, the mean and SD of error

of unimodal object localization became much smaller (see

Fig. 4) compare to the 60 deg/sec saccade test. However,

the disadvantage of this solution was that, the humanoid

robot must always be aware of the angular speed of its head

and condition specific calibration value must be known.

Similar to biological system, altering robot design will

eventually alter the weight of all sensory system.

In this paper, the Bayesian model for multimodal

sensory information fusion is described. We show that

Bayesian fusion of multisensory information is simple

and can be applied in humanoid robot to increase the

accuracy of object localization. However, current model

requires prior knowledge on the reliability of sensory

system obtained through a series of experiments. Besides,

the Bayesian model failed to generate accurate spatial

position of audiovisual stimulus when both of the sensory

systems were not reliable, especially during saccade.

Future work should focus on using neural network and

reinforcement learning to provide the Bayesian fusion

model the ability to learn the weights online.

-

-

5. Conclusion
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