
Abstract:

1. Introduction

2. Preliminaries and formulation
of the problem
The state equation of the Fornasini-Marchesini type

model of a continuous-discrete linear system has the form

[11]

The problem of asymptotic stability of models of 2D

continuous-discrete linear systems is considered. Compu-

ter methods for investigation of asymptotic stability of the

Fornasini-Marchesini type and the Roesser type models,

are given. The methods proposed require computation of

the eigenvalue-loci of complex matrices. Effectiveness

of the stability tests are demonstrated on numerical

examples.

Keywords: continuous-discrete system, hybrid system,

linear system, stability, computational methods.

In continuous-discrete systems both continuous-time

and discrete-time components are relevant and interacting

and these components can not be separated. Such systems

are called the hybrid systems. Examples of hybrid systems

can be found in [6], [8], [9], [16]. The problems of dyna-

mics and control of hybrid systems have been studied in

[5], [6], [16].

In this paper we consider the continuous-discrete

linear systems whose models have structure similar to the

models of 2D discrete-time linear systems. Such models,

called the 2D continuous-discrete or 2D hybrid models,

have been considered in [11] in the case of positive

systems.

The new general model of positive 2D hybrid linear

systems has been introduced in [12] for standard and in

[13] for fractional systems. The realization and solvability

problems of positive 2D hybrid linear systems have been

considered in [11], [14] and [15], [17], respectively.

The problems of stability and robust stability of 2D

continuous-discrete linear systems have been investigated

in [1-4], [7], [18 -20].

The main purpose of this paper is to present compu-

tational methods for investigation of asymptotic stability

of the Fornasini-Marchesini and the Roesser type models

of continuous-discrete linear systems.

The following notation will be used: - the set of real

numbers, = [0, ], - the set of non-negative integers,

- the set of real matrices and = ,

|| (·) || - the norm of (·), { } - -th eigenvalue of

matrix .
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, , (1)

where = , and ,

, ,

The Fornasini-Marchesini type model (1) is

called asymptotically stable (or Hurwitz-Schur stable) if

for 0 and bounded boundary conditions

(0, ), ( ,0), , , (2)

the condition lim || ( )|| = 0 holds for .

The characteristic matrix of the model (1) has the form

( ) = . (3)

The characteristic function

( ) = det ( ) = det[ ] (4)

of the model (1) is a polynomial in two independent

variables and , of the general form

(5)

The state equation of the Roesser type model of a con-

tinuous-discrete linear system has the form [11]

(6)

where

are the vertical and the horizontal vectors, respectively,

is the input vector and ,

, , , , .

The boundary conditions for (6) are as follows

The Roesser type model (6) is called asym-

ptotically stable (or Hurwitz-Schur stable) if for ( ) 0

and bounded boundary conditions (7) the conditions

lim and hold for

.

The characteristic matrix of the model (6) has the form

( ) =

0 1 2
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, ( ,0)

( ) = , = 1.

( ) = ( )/ , ( ) , ( )

( )

( ,0), ( ,0), , (0, ), (0, ), 1, Z . (7)

|| ( )|| = 0 lim || ( )|| = 0

(8)

�

�

� � � � � �

� � � �

�

� � � �


 
 


� �

� � � � � � �

� � � � �

� � � � � � � � �

� �  �

	�

n m

n×m n×m

k j

h h h v

m n ×

n ×n × × n ×m ×m

h v h v

h v

Definition 1.

Definition 2.

i,t	�

n

n

kj nn

i,t i,t

1

	� 	�

.

n n

n

n n n n n

1 2

1

1 2 2 1 2 2 1 2

COMPUTATIONAL METHODS FOR INVESTIGATION OF STABILITY OF MODELS

OF 2D CONTINUOUS-DISCRETE LINEAR SYSTEMS

Mikołaj Busłowicz

Received 9 September 2010; accepted 20 September 2010.th th

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 5,     N° 1     2011

Articles 3

n

k=0

n

j=0

( )x t,i� h x t,ih ( )A11

sI A
 11n1

B1A12


 A12

=

t i��� �+ +, Z ,

+ u t,i( ),
x t,i+v ( 1) x t,iv ( )A21


 A21

B2A22

zI A
 22n2



Using the rules for computing the determinant of block

matrices [10], we obtain that the characteristic function

of the Roesser type model can be

computed from one of the following equivalent formulae

( ) = det( – )det( ( ) ),

(9a)

The characteristic function of the Roesser type model

can be written in the form

From [1], [7] we have the following theorem.

The Fornasini-Marchesini type model (1)

with characteristic function (4) (or the Roesser type model

(6) with characteristic function (9)) is asymptotically

stable if and only if

( ) 0, Re 0, | z | 1. (11)

The polynomial satisfying condition (11) is

called continuous-discrete stable (C-D stable) or Hurwitz-

Schur stable [1].

The main purpose of this paper is to present com-

putational methods for checking the condition (11) of

asymptotic stability of the Fornasini-Marchesini type

model (1) and the Roesser type model (6) of continuous-

discrete linear systems.

w s, z zI A sI A A zI A A

w s, z s

-1
22 11 12 22 21

11 22 21 11 12

1 2 0

1

1

– – –

( ) = det( – )det( – – ( – ) }.

(9b)

( ) = , = 1. (10)

( )

The condition (11) is equivalent to the follo-

wing two conditions

( ) 0, Re 0, [0, 2 ], (12)

( ) 0, | z | 1, [0, ). (13)

From [7] it follows that (11) is equivalent to the

conditions

( ) 0, Re 0, | z |= 1, (14)

( ) 0, Re = 0, | z | 1. (15)

It is easy to see that conditions (14) and (15) can be

written in the forms (12) and (13), respectively.

From (4) for we have

( ) = det[ ( – ) – – ]. (16)

The condition (12) for the Fornasini-Mar-

chesini type model (1) with ± holds if and only

if all eigenvalues of the complex matrix ( ) have

negative real parts for all [0, 2 ], where
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3. Solution of the problem
Theorem 2.

Proof.

Lemma 1.
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3.1. Asymptotic stability of the Fornasini-

Marchesini type model

w s, z H s, z( ) = det ( )

n n n

n n n

n n

2 1 2

1 2 1

1 2

( ) = ( – ) ( + ). (17)

If ± then the matrix – is non-singular

for all [0, 2 ] and

[ ( – ) – – ] = [ – ][ – ( )], (18)

where ( ) has the form (17).

From (16) and (18) it follows that

( ) = det( – )det( – ( )). (19)

This means that for ± the eigenvalues of the

matrix ( ) are the roots of the polynomial ( ).

The condition (13) for the Fornasini-Marche-

sini type model (1) with holds if and only if all

eigenvalues of the complex matrix ( ) have absolute

values less than one for all y 0, where

( ) = ( – ) ( + ). (20)

Substituting in (4) one obtains

( ) = det[ ( – ) – – ]. (21)

If then the matrix – is non-singular for all

y 0 and

[ ( – ) – – ] = [ – ][ – ( )], (22)

where ( ) is defined by (20).

From (21) and (22) it follows that

( ) = det( – )det( – ( )). (23)

Hence, if then the eigenvalues of the matrix ( )

are the roots of the polynomial ( ).

The Fornasini-Marchesini type model (1) with

± and is asymptotically stable if and only

if the conditions of Lemmas 1 and 2 hold, i.e.

Re { ( )} < 0, [0, 2 ], = 1,2,..., , (24)

and

| { ( )}|< 1, 0, = 1,2,..., , (25)

where the matrices ( ) and ( ) have the forms

(17) and (20), respectively.

It follows from Theorem 2 and Lemmas 1 and 2.

From (17) for = 0 and = we have

(1) = ( – ) ( + ), (26a)

(–1) = (– – ) (– + ). (26b)

From the theory of matrices it follows that if (–1) det

(1) 0 then not all eigenvalues of the matrix (26a)

have negative real parts. Similar condition holds for the
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From (8) for we have

( ) = det (29)

The condition (12) for the Roesser type model

(6) with ± holds if and only if all eigenvalues of the

complex matrix ( ) have negative real parts for all

[0, 2 ], where

( ) = + ( – ) . (30)

If ± then the matrix – is non-

singular for all [0, 2 ] and from (9a) it follows that

( ) = det( – )det( – ( )), (31)

where ( ) has the form (30). This means that for

± the eigenvalues of the matrix ( ) are the roots

of the polynomial ( ).

The condition (13) for the Roesser type model

(6) with holds if and only if all eigenvalues of the

complex matrix ( ) have absolute values less than one

for all y 0, where

( ) = + ( – ) . (32)

If then the matrix – is non-singular

for all y 0. From (9b) for we have

( ) = det( – )det( – – ( – ) }.

(33)

From (32) and (33) it follows that

( ) = det( – )det( – ( ), (34)

where ( ) is defined by (32).

If then the eigenvalues of the matrix ( ) are

the roots of the polynomial ( ).

The Roesser type model (6) with ± and

is asymptotically stable if and only if the

conditions of Lemmas 3 and 4 hold, i.e.

Re { ( )} < 0, [0, 2 ], = 1,2,..., , (35)

and

| { ( )}| < 1, 0, = 1,2,..., , (36)

where matrices ( ) and ( ) have the forms (30) and

(32), respectively.

The proof follows from Theorem 2 and Lemmas 3

and 4.

From (30) for = 0 and = it follows that

(1) = + ( – ) , (37a)

(–1) = + (– – ) . (37b)

From the above and theory of matrices we have the

following remark.

3.2. Asymptotic stability of the Roesser type model
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matrix (26b). Hence, we have the following remark.

Simple necessary condition for asymptotic

stability of the Fornasini-Marchesini type model (1) with

± has the form

(–1) det( – )det( + ) > 0 (27a)

(–1) det(– – )det(– + ) > 0. (27b)

Consider the Fornasini-Marchesini type

model (1) with the matrices

(28)

It is easy to check that the necessary conditions (27) hold.

Computing eigenvalues of the matrices ( ), [0,

2 ], and ( ), [0, 100], one obtains the plots shown

in Figures 1 and 2. It is easy to check that eigenvalues of

( ) remain in the unit circle for all >100.

From Figures 1 and 2 it follows that the conditions (24)

and (25) of Theorem 3 are satisfied and the system is

asymptotically stable.

( ), [0, 2 ].

( ), [0, 100].

Remark 1.

Example 1.
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Remark 2.

Example 2.

Simple necessary condition for asymptotic

stability of the Roesser type model (6) with ± are as

follows: (–1) det (1) > 0 and (–1) det (–1) > 0.

Consider the Roesser type model (6) with the

matrices

(38)

Eigenvalues of the matrices ( ), [0, 2 ] and

( ), [0, 100], are shown in Figures 3 and 4. If is easy

to check that eigenvalues of ( ) remain in the unit circle

for all >100.

From Figures 3 and 4 it follows that the conditions (35)

and (36) of Theorem 4 are satisfied and the system is

asymptotically stable.

( ), [0, 2 ].

( ), [0, 100]

Computational methods for investigation of asymp-

totic stability of the Fornasini-Marchesini type model (1)

(Theorem 3) and the Roesser type model (6) (Theorem 4)

of continuous-discrete linear systems have been given.

These methods require computation of eigenvalue-loci of

A I

S S

S e

S jy y

S jy

y

Fig. 3. Eigenvalues of the matrix S e

Fig. 4. Eigenvalues of the matrix S jy y .
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4. Concluding remarks

complex matrices (17) and (20) for the Fornasini-Mar-

chesini type model and complex matrices (30) and (32) for

the Roesser type model.
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