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Abstract:
All over the globe there exists a serious problemwith skin
cancer, most especially melanoma; a malignancy which
is known to behave aggressively and can metastasize.
Detecting this early is the key to saving lives. This study
introduces a new method of classifying melanoma using
an advanced model known as MobileNet‐V3‐Large. This
technique differs from others in that it considers both
the images of the skin lesion and tabular data includ‐
ing factors consisting of the patient’s approximate age,
gender and the location of the lesion on the body of
the patient. Such an approach empowers the predictions
of whether the skin lesion may be malignant or benign.
Tested on a huge collection consisting of skin images
combined with tabular data, it was established that this
method outperforms others already existing. The results
of this study showed that a high accuracy of 99.56% was
achieved using the proposed model. This study indicates
that utilizing the multi‐input method will substantially
enhance diagnosis for melanoma hence reducingmortal‐
ities in the future.

Keywords: melanoma cancer, benign, malignant, con‐
volution neural network (CNN), deep learning (DL), pre‐
trained model

1. Introduction
In 2023, it’s estimated that nearly 97,610 individ‐

uals in the US received the daunting diagnosis of inva‐
sive malignant melanoma, which was slightly lower
than the 99,780 cases reported in 2022. Tragically,
the number of lives lost to this disease increased from
7,650 in 2022 to an estimated 7,990 in 2023 [1–3].
Projections indicated that approximately 89,070 cases
of early in situ melanomawould be identiϐied in 2023.
The silver lining is that whenmelanomas are detected
and treated at this early stage, there’s a chance for
complete recovery. Since most melanomas manifest
visibly on the skin, it underscores the crucial impor‐
tance of early detection and treatment [4]. Skin cancer,
increasingly prevalent today, affects humans widely
due to the skin’s status as the body’s largest organ
[5]. When facing skin cancer, it’s important to be
proactive and utilize all available resources to detect
it early and enhance treatment outcomes. This type of
cancer encompasses two main categories: melanoma
and nonmelanoma skin cancer [6]. Melanoma, though
rare, is perilous and often fatal, accounting for a mere

1% of cases yet yielding a higher death toll. Originat‐
ing from melanocytes, which regulate skin pigmen‐
tation, melanoma can emerge anywhere on the body
but commonly appears on sun‐exposed areas like the
hands, face, and neck. Early detection is crucial for
effective treatment; otherwise, melanoma can metas‐
tasize, leading to dire consequences. Various subtypes
exist, includingnodularmelanoma, superϐicial spread‐
ing melanoma, acral lentiginous, and lentigo maligna.
Conversely, nonmelanoma skin cancers like basal cell
carcinoma (BCC), squamous cell carcinoma (SCC), and
sebaceous gland carcinoma (SGC) are more prevalent.
These cancers typically arise in the outer layers of the
skin andhave a lower tendency tometastasize,making
them relatively easier to treat compared to melanoma
[6–12].

Fortunately, technology plays a crucial role in aid‐
ing dermatologists. Artiϐicial intelligence acts as a reli‐
able assistant, swiftly analyzing images of skin lesions
to identify potential signs of cancerwith greater speed
and accuracy. Additionally, advanced imaging tech‐
niques like reϐlectance confocal microscopy and opti‐
cal coherence tomography provide valuable insights
into skin abnormalities without invasive procedures
[3,13–15]. In the ϐield of medical imaging, experts are
hands‐on in assembling datasets and guidingmachine
learning researchers onwhat aspects to consider. Con‐
sider the HAM10000 dataset, for instance; it’s a col‐
lection of images showing different skin lesions [17].
Since 2016, it has played a crucial role in the Inter‐
national Skin Imaging Collaboration (ISIC) challenge,
assisting in addressing various skin‐related issues
[17–19]. There are other datasets like PH2, featuring
200 dermoscopic images sorted into various diagno‐
sis groups, and the Interactive Atlas of Dermoscopy,
which offers over 1000 clinical cases with thorough
annotations and pathology ϐindings. These resources
have proven invaluable in advancing computer‐aided
diagnosis (CAD) research [21].

Segmentation is a foundational and intricate task
in the automated analysis of skin lesions. Within clin‐
ical contexts, rule‐based diagnostic systems heavily
rely on precise lesion segmentation to estimate criti‐
cal diagnostic parameters such as asymmetry, border
irregularity, and lesion size accurately. These metrics
serve as fundamental components for the application
of established algorithms like the ABCD algorithm and
its derivatives, such as ABCDE and ABCDEF.

73



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 1 2025

Table 1. Skin cancer detection methodologies and their respective datasets

Reference Methodology Dataset(s) Evaluation Metrics
[22] The preprocessing images and ϐine‐tuning

convolutional neural networks with transfer
learning, with EfϐicientNet B4 identiϐied as the
top‐performing model.

HAM10000 dataset F1 Score: 87%,
Accuracy: 87.91%

[23] Automated Skin‐Melanoma Detection (ASMD)
system using image processing and SVM‐based
classiϐication, proposing a Melanoma‐Index (MI)
for clinical use.

DD image dataset Accuracy: 97.50%

[24] Automatic skin cancer diagnosis system including
Histogram of Gradients (HG) and Histogram of
Lines (HL), combined with other features.

HPH dermoscopy
database and the
Dermoϐit standard
database

Accuracy: 98.79% (HPH)
and 92.96% (the standard
Dermoϐit)

[25] Skin cancer detection system utilizing Genetic
Programming (GP) for evolving a classiϐier and
feature selection.

PH2 dataset Accuracy: 97.92%

[26] Image processing and deep learning techniques,
including Convolutional Neural Networks (CNNs),
for skin cancer detection and classiϐication.

MNIST
HAM10000 dataset

Weighted Average
Accuracy: 0.88, Weighted
Average Recall: 0.74,
Weighted F1‐score: 0.77

[27] Classiϐication of skin lesions, utilizing
dynamic‐sized kernels and both ReLU and
leakyReLU activation functions.

HAM10000 dataset Overall accuracy: 97.85%

[28] Soft‐Attention mechanism in deep neural
architectures for skin lesion classiϐication.

HAM10000 dataset and
ISIC‐2017 dataset

Precision: 93.7%
(HAM10000), sensitivity:
91.6% (ISIC‐2017)

[29] MobileNetV3 introducing the Improved Artiϐicial
Rabbits Optimizer (IARO) algorithm to enhance
feature selection

PH2, ISIC‐2016, and
HAM10000 datasets

Accuracy: 87.17%
(ISIC‐2016), 96.79% (PH2

dataset), and 88.71%
(HAM10000)

[30] SkinTrans, an improved transformer network, for
skin cancer classiϐication, utilizing vision
transformers (VIT) with self‐attention
mechanism.

HAM10000 and clinical
datasets

Accuracy: 94.3%
(HAM10000) and 94.1%
(Clinical)

The ABCD algorithm provides a structured frame‐
work for evaluating skin lesions, with each let‐
ter representing key morphological features. Accu‐
rate lesion segmentation is imperative for enabling
reliable and effective automated diagnostic assess‐
ments, thereby enhancing clinical decision‐making
processes. As such, robust segmentation methodolo‐
gies are essential for ensuring the integrity and clin‐
ical utility of automated skin lesion analysis systems
[30–33].

In theworld of academic research, three‐ϐield plots
(Figure 1) and co‐occurrence networks (Figure 2)
serve as invaluable tools for understanding the intri‐
catewebof connectionswithin scholarly literature (93
reviews). These visualizations provide insights into
how keywords, university afϐiliations, and authors’
countries of origin intersect. These visual tools pro‐
vide a snapshot of how ideas move and evolve
within academia. Conceptualize these tools as archi‐
tectural schematics, opening the complex interrela‐
tions among these elements. The height of the boxes
within the three‐ϐield plot signiϐies the volume of
publications associated with each afϐiliation, offering
a straightforward gauge of research output. A taller
box indicates a higher number of publications from
that afϐiliation, a key metric for evaluating research
productivity.

In research publications, a graphical representa‐
tion (see Figure 2) called the co‐occurrence network
of author keywords shows the connections between
different author keywords. In the same research doc‐
uments, individual keywords are nodes within these
networks and edges that connect these nodes indi‐
cate the repeated co‐occurrence of such words often.
Through the research ϐield or a speciϐic set of publi‐
cations, these networks highlight essential informa‐
tion by presenting an elastic picture of the underlying
relationships. Upon closer examination of Figure 1,
it is revealed that Germany, the United States, and
Australia prominently emerge as the forerunners in
academic endeavors that chronicle the steps made
within the artiϐicial‐intelligence driven melanoma.

In Figure 2, speciϐically tailored analysis of key‐
words associated with artiϐicial intelligence is offered,
providing a comprehensive breakdown with a total of
30 nodes.
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Figure 1. Three‐field plot analysis (AU_UN—ID—AU_CO)

Figure 2. Co‐occurrence network of author keywords

2. Different Pretrained Convolutional Neural
Networks

In this study the feature blocks of these pre‐
trained Convolutional Neural Networks (CNNs) [35]
have been used as the feature extractor of the given
imagedata, and theyhavebeen compared according to
the classiϐicationmetrics of thewhole proposed archi‐
tecture, which consists of the feature extractor block
from the pretrained model, with that the best metrics
have been obtained and a classiϐication block for the
image data, as well as another classiϐication block for

the tabular data, and a last classiϐication block from
which the combined image and tabular data pass.
2.1. ConvNeXt Base

ConvNeXt Base, an innovative CNN architecture,
represents a signiϐicant advancement in the ϐield of
computer vision. While not as widely recognized as
some mainstream architectures, ConvNeXt Base has
garnered attention for its robust feature extraction
capabilities and computational efϐiciency.
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Notable for its utilization of grouped convolutions,
layer normalization, and stochastic depth regulariza‐
tion, ConvNeXt Base aims to strike a delicate balance
betweenmodel complexity and performance. In terms
of performance, ConvNeXt Base has demonstrated
promising results in various image classiϐication tasks.
For instance, researchers have employed ConvNeXt
Base to classify complexmedical images, such as those
related to tumor detection in mammography and
histopathological analysis. Its ability to capture intri‐
cate visual patterns while maintaining computational
efϐiciency makes ConvNeXt Base a compelling choice
for diverse applications. Architecturally, ConvNeXt
Base comprises a series of CNBlocks, each featur‐
ing grouped convolutions, linear transformations, and
permutations. These blocks, augmented with stochas‐
tic depth layers, facilitate enhanced model robustness
and generalization capabilities. Furthermore, Con‐
vNeXt Base leverages layer normalization and vari‐
ous activation functions to capture complex patterns
effectively.
2.2. MobileNet V3 Large

MobileNet V3 Large stands as a testament to
the evolution of lightweight CNN architectures opti‐
mized for mobile and embedded devices. Built upon
the success of its predecessors, MobileNet V3 Large
prioritizes computational efϐiciency without sacriϐic‐
ing classiϐication accuracy. Its architectural design,
characterized by depth‐wise separable convolutions,
inverted residual blocks, and squeeze‐and‐excitation
modules, enables efϐicient feature extraction across
diverse datasets.

In practical applications, MobileNet V3 Large has
found widespread adoption, particularly in scenar‐
ios where resource constraints pose challenges. For
example, it has been instrumental in various mobile
applications, ranging from real‐time object detec‐
tion to image classiϐication in low‐power devices.
The incorporation of hard‐swish activation func‐
tions and dropout layers further enhances its per‐
formance and regularization capabilities. Architec‐
turally, MobileNet V3 Large comprises a hierarchi‐
cal structure of depth‐wise separable convolutions
and inverted residual blocks, facilitating efϐicient fea‐
ture extraction and spatial downsampling. Addition‐
ally, squeeze‐and‐excitation modules enable adaptive
feature recalibration, enhancing the discriminative
power of the model across different input domains.
2.3. VGG16

VGG16, a seminal CNN architecture, has left an
indelible mark on the landscape of image classiϐica‐
tion. Renowned for its simplicity and effectiveness,
VGG16 remains a cornerstone in the ϐield despite the
emergence of newer architectures. Its architectural
design, characterized by repeated blocks of convolu‐
tional layers followed by rectiϐied linear unit (ReLU)
activation functions and max‐pooling operations, pri‐
oritizes feature extraction and spatial downsampling.

In practice, VGG16 has been extensively utilized
in various computer vision tasks, ranging from image
recognition to object localization [6]. Its straight‐
forward design and strong performance make it a
popular choice for benchmarking and experimenta‐
tion in research settings. Architecturally, VGG16 com‐
prises a hierarchical structure of convolutional layers,
augmented by ReLU activation functions and max‐
pooling operations. This design fosters hierarchical
feature extraction, enabling the model to capture
increasingly abstract representations as information
traverses deeper into the network. Additionally, the
incorporation of max‐pooling layers facilitates spa‐
tial downsampling, reducing computational complex‐
ity while preserving discriminative information.
2.4. EfficientNet V2 S

EfϐicientNet V2 S emerges as a pinnacle in the
realm of scalable and efϐicient CNN architectures,
embodying state‐of‐the‐art advancements in model
design and optimization. With a focus on achieving
optimal performance across varying computational
budgets, EfϐicientNet V2 S has garnered widespread
acclaim for its adaptability to diverse deployment
scenarios. Its architectural design, characterized by
a standard convolutional layer followed by fused
MobileNetV2 (MBConv) blocks, epitomizes efϐiciency
without compromising classiϐication accuracy.

In practical applications, EfϐicientNet V2 S has
demonstrated remarkable efϐicacy across a spectrum
of tasks, from image classiϐication to object detec‐
tion. Its hierarchical structure and strategic incor‐
poration of stochastic depth layers contribute to
enhanced model robustness and generalization capa‐
bilities. Architecturally, EfϐicientNet V2 S comprises a
cascade of MBConv blocks, each featuring depth‐wise
separable convolutions and efϐicient channel atten‐
tion mechanisms. This design fosters efϐicient fea‐
ture extraction and aggregation, enabling the model
to capture complex visual patterns while minimiz‐
ing computational overhead. Additionally, the utiliza‐
tion of stochastic depth layers enhances model regu‐
larization, contributing to improved performance on
diverse datasets.
2.5. DenseNet161

DenseNet161 stands as a paradigmatic shift
in CNN architectures, distinguished by its dense
connectivity pattern that promotes feature reuse and
gradient ϐlow propagation throughout the network.
Renowned for its superior performance in capturing
intricate visual representations, DenseNet161 has
become a cornerstone in image classiϐication tasks,
particularly in scenarios requiring robust feature
extraction. In practical applications, DenseNet161
has demonstrated remarkable efϐicacy across various
domains, including medical image analysis and
remote sensing. Its dense connectivity pattern and
hierarchical structure facilitate information ϐlow,
enabling the model to capture increasingly abstract
representations as information traverses deeper into
the network.
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Architecturally, DenseNet161 comprises a series of
dense blocks, each featuring densely connected lay‐
ers that receive direct input from all preceding layers
within the block. This design promotes feature reuse
and gradient ϐlow propagation, facilitating efϐicient
training and improved model expressiveness. Addi‐
tionally, transition layers and global average pool‐
ing operations further enhance feature aggregation
and classiϐication performance, making DenseNet161
a formidable contender in the realm of image classiϐi‐
cation architectures.

3. Material and Method
3.1. Dataset Acquisition and Preprocessing

The primary dataset utilized in this study is
the SIIM‐ISIC Melanoma Classiϐication Competition
Dataset sourced fromKaggle. This dataset comprises a
comprehensive collection of medical images and cor‐
responding metadata essential for melanoma classi‐
ϐication research. The images are primarily dermo‐
scopic images of skin lesions, while the metadata
includes critical patient information such as identi‐
ϐiers, sex, age, anatomical site, diagnosis, and malig‐
nancy status.

Upon acquisition, the dataset underwent extensive
preprocessing to ensure uniformity and compatibility
with the model architecture. The images were ini‐
tially available in multiple formats, including DICOM,
JPEG, and TFRecord. To facilitate ease of processing
and analysis, all images were converted to a standard
format, namely JPEG. Additionally, the images were
resized to a uniform resolution of 224x224 pixels to
ensure consistency across the dataset.
3.2. Data Augmentation and Transformation

To enhance the diversity and robustness of the
training dataset, various data augmentation tech‐
niques were applied. Leveraging the transforms mod‐
ule from the PyTorch library, augmentations such as
random vertical and horizontal ϐlips were performed
on the images. These augmentations help the model
generalize better by introducing variations in the
training data, thereby reducing overϐitting tendencies.

Furthermore, normalization was applied to the
image data to standardize the pixel values. This nor‐
malization process involved scaling the pixel values to
a standard range, typically between 0 and 1, to stabi‐
lize the training process and accelerate convergence.
3.3. Proposed Deep Learning Model

Convolutional Neural Networks (CNNs) have
become integral in various domains, particularly
in computer vision tasks, due to their efϐicacy in
learning and extracting features from visual data.
CNNs are adept at discerning intricate patterns and
structures within images, making them suitable for
tasks like image classiϐication, object detection, and
segmentation.

Table 2. Number of tabular and image data taken from
SIIM‐ ISIC Dataset

Class Total Training Testing
Malignant 571 461 110
Benign 579 459 120
Total 1150 920 320

In this study, CNNs are utilized to tackle the crucial
task of classifying benign and malignant skin lesions
in dermatology. The objective is to leverage CNNs
to identify underlying patterns and structures within
skin lesion images accurately distinguishing between
benign and malignant cases.

The dataset (Table 2) incorporates both tabular
data, which consists of patient demographics (sex,
approximate age) and lesion location, and image data
characterized by three channels and dimensions of
224x224 pixels. The image data undergoes a sequen‐
tial process, starting with convolutional layers, fol‐
lowed by batch normalization layers, and then Hard‐
wish activation layers from the MobileNet V3 Large
Model’s Feature Block, to extract pertinent features.
Subsequently, it passes through linear, batch normal‐
ization, and dropout layers to prepare it for classiϐi‐
cation. Meanwhile, the tabular data undergoes trans‐
formations via multiple linear and ReLU layers. These
two sets of data are combined and processed through
a linear layer. For classiϐication, the combined data
then proceeds through a sigmoid activation function
and is rounded as ϐinal classiϐication.
3.4. Proposed Deep Learning Model Architecture

Incorporating MobileNetV3’s feature extraction
mechanism, this model harnesses the efϐiciency
and sophistication of modern CNN architectures.
MobileNetV3’s feature extractor is pivotal in distilling
intricate patterns from skin lesion images. Comprising
multiple layers, as shown in Figure 3 MobileNetV3
initiates with a convolutional layer, followed by
batch normalization for stabilization and Hardswish
activation for non‐linearity. This is particularly
effective in capturing diverse features across various
skin lesion types. Subsequently, MobileNetV3’s
architecture integrates Inverted Residual blocks, each
composed of depthwise separable convolutions and
pointwise convolutions. These intricate structures
enable the model to efϐiciently capture spatial
hierarchies and semantic information within the
image data.

The image features extracted by MobileNetV3
are then further reϐined through the image classi‐
ϐier component. This classiϐier comprises multiple
layers, starting with a ϐlattening operation to con‐
vert the multi‐dimensional feature maps into a one‐
dimensional tensor. Subsequently, the ϐlattened fea‐
tures are processed through a sequence of linear
transformations, ReLU activations, batch normaliza‐
tion for feature scaling, and dropout regularization to
mitigate overϐitting risks.
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Figure 3. Proposed model architecture

These operations collectively facilitate the learn‐
ing of discriminative features essential for accurate
lesion classiϐication. Concurrently, the tabular data
undergoes processing through a dedicated tabular
classiϐier component. Similar to the image classiϐier,
this component comprises multiple fully connected
layers augmented with ReLU activation functions.
These layers enable the model to capture intri‐
cate relationships within the tabular data, leverag‐
ing patient demographics and medical history for
improved lesion classiϐication accuracy.

Finally, the fused features from both the image
and tabular classiϐiers are concatenated and passed
through the fusion layer. This layer consists of a ϐlat‐
tening operation followed by a linear transformation.
While simpler in structure compared to the classiϐiers,
the fusion layer synthesizes the extracted features
from both modalities, facilitating a holistic analy‐
sis of the input data and ultimately contributing to
enhanced classiϐication performance. By integrating
both image and tabular data sources and leveraging
sophisticated feature extractionmechanisms and clas‐
siϐication components, this model presents a compre‐
hensive approach to skin lesion classiϐication.

3.5. Experimental Setup

For conducting the experiments, a computational
setup consisting of an Intel Core i9 processor and an
NVIDIA GeForce RTX GPU was utilized. The experi‐
mentswere executedwithin the VS Code JupyterNote‐
book interface leveraging the PyTorch framework for
model implementation. The training process spanned
over 35 epochs and took approximately 28 minutes to
complete on the aforementioned hardware conϐigura‐
tion. The architecture of the proposed methodology is
shown in Figure 4.

The experimental setup encompassed the evalu‐
ation of multiple neural network architectures. Loss
and accuracy curveswere generated for each architec‐
ture, as depicted in the following ϐigures.

In the study of skin lesion classiϐication, the exper‐
imental process is initiated with the collection of two
distinct types of data. Image Data, which consist of
skin lesion images, and Tabular Data, which encom‐
pass patient demographics and clinical information.
The data then undergoes a preprocessing stage. This
stage is multifaceted and includes the removal of
any null values present in the data, the elimina‐
tion of zero values from the ‘age_approx’ column,
and the custom encoding of the ‘sex’ and ‘anatomi‐
cal_site_general_challenge’ columns.
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Figure 4. Proposed methodology

Figure 5. Densenet161 loss and accuracy curves

Additionally, data selection is performed based on
the target value, selecting all datawith amalignant tar‐
get value and sampling an equal amount of data with
a benign target value. The images are then processed,
resized to a standard size of (224, 224, 3), augmented
to increase the diversity of the dataset, normalized,
and converted to tensors with a ϐloat data type.

Concurrently, ‘sex’, ‘age_approx’, and ‘anatomi‐
cal_site_general_challenge’ are extracted as indepen‐
dent variables from the tabular data. The Image Ten‐
sors and Tabular Tensors are then utilized to train
the model. The Image Tensors are processed through
an MobileNet V3 Large model for feature extraction,
while the Tabular Tensors are processed through a
Multilayer Perceptron. The training process involved
iteratively optimizing the model parameters using
the Adam optimizer with a learning rate of 0.01.
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Figure 6. Convnext_base loss and accuracy curves

Figure 7.Mobilenet_v3_large loss and accuracy curves

The loss function employed was the Binary Cross‐
Entropywith Logits Loss (BCEWithLogitsLoss), which
is well‐suited for binary classiϐication tasks such as
melanoma classiϐication.

Finally, the model is evaluated using a separate
test set, outputting a prediction of either ‘Benign’
or ‘Malignant’ for each skin lesion. To evaluate the
performance of the trained model, a comprehensive
suite of evaluation metrics was employed. The pri‐
mary metrics used were the confusion matrix and
the classiϐication report. The confusion matrix pro‐
vides a detailed breakdownof themodel’s predictions,
including truepositives (TP), truenegatives (TN), false
positives (FP), and false negatives (FN). From the
confusion matrix, metrics such as accuracy, precision,
recall (sensitivity), and F1‐score can be derived.

4. Results and Discussion
The results of this study highlight MobileNet V3

Large as the optimal pretrained model for skin lesion
classiϐication, offering superior accuracy and robust‐
ness. These ϐindings underscore the potential of deep
learningmodels in enhancing diagnostic accuracy and
guiding clinical decision‐making in melanoma detec‐
tion. The results obtained from the evaluation on the
test set are summarized in Table 3, while Table 4
provides the corresponding confusion matrix.
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Figure 8. VGG16 loss and accuracy curves

Figure 9. Efficientnet_v2_s loss and accuracy curves

Table 3. Performance on the test set

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Efϐicientnet_v2_s 91.74 96.33(B)/87.60(M) 87.50(B)/96.36(M) 91.70(B)/91.77(M)
Convnext_base 77.39 82.07(B)/73.38(M) 72.50(B)/82.72(M) 76.99(B)/77.77(M)
Densenet161 98.69 97.56(B)/1.00(M) 1.00(B)/97.27(M) 98.76 (B)/98.61 (M)
Mobilenet_v3_large 99.56 1.00(B)/99.09(M) 99.16(B)/1.00(M) 99.58(B)/99.54(M)
VGG16 87.39 85.83(B)/90.83(M) 90.83(B)/85.83(M) 88.26(B)/88.26(M)

This study investigated the performance of differ‐
ent pretrained models as feature extractors for dis‐
tinguishing benign andmalignant skin lesions. Among

the models examined, MobileNet V3 Large demon‐
strated the highest accuracy, achieving an outstanding
99.56%.
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Table 4. Confusion matrix on the test set

Model TP (B) TN (M) FN FP
Efϐicientnet_v2_s 105 106 15 4
Convnext_base 87 91 33 19
Densenet161 120 107 0 3
Mobilenet_v3_large 119 110 1 0
VGG16 109 92 11 18

A detailed comparison of the models’ perfor‐
mance metrics, encompassing accuracy, precision,
recall, and F1‐score, is presented in Table 3.MobileNet
V3 Large exhibited superior performance across
all metrics, indicating its effectiveness in capturing
discriminative features from skin lesion images. With
precision and recall scores of 1.00 for benign and
malignant lesions, respectively, MobileNet V3 Large
demonstrated exceptional accuracy in identifying
both classes.

EfϐicientNet V2 Small andVGG16 also yielded com‐
petitive results, achieving accuracies of 91.74% and
87.39%, respectively. However, they displayed slightly
lower precision and recall compared to MobileNet
V3 Large. Conversely, models such as ConvNext Base
exhibited relatively lower performance, suggesting
limitations in feature extraction from skin lesion
images.

The confusion matrices provided in Table 4 offer
insights into the models’ classiϐication performance,
depicting TP, TN, FP, and FN. MobileNet V3 Large
achieved the highest TP rate for both benign and
malignant lesions, with only one FN and no FP
instances. This underscores its robustness in accu‐
rate lesion classiϐication, minimizing misclassiϐica‐
tions, and mitigating the risk of false diagnoses.

In conclusion, the choice of a pretrained model as
a feature extractor signiϐicantly impacts the perfor‐
mance of skin lesion classiϐication tasks. MobileNet V3
Large emerged as the optimalmodel, offering superior
accuracy and robustness in distinguishing between
benign and malignant lesions. Future research could
explore ensemblemethods or ϐine‐tuning strategies to
further enhance model performance and generaliza‐
tion capabilities.

5. Conclusion
Concluding this study emphasizes the severity of

the global skin cancer issue, particularly melanoma,
due to its aggressive behavior and potential to spread.
Early detection is pivotal in combatting this disease
and saving lives. The introduction of a novel approach
to melanoma classiϐication utilizing the MobileNet‐
V3‐Largemodel represents a signiϐicant advancement
in this ϐield.

By integrating skin lesion images with pertinent
patient data such as age, gender, and lesion loca‐
tion, this method demonstrates enhanced predictive
capabilities for distinguishing betweenmalignant and
benign lesions.

The comprehensive analysis of a vast dataset con‐
ϐirms the superiority of this approach over existing
methods, as evidenced by an impressive accuracy rate
of 99.56%.

These ϐindings hold promise for revolutioniz‐
ing melanoma diagnosis and subsequently reducing
mortality rates associated with this disease. By har‐
nessing the power of multi‐input methodology, clin‐
icians can anticipate more accurate and timely diag‐
noses, thereby facilitating prompt intervention and
improved patient outcomes. This research heralds a
new era in melanoma detection, underscoring the
potential of innovative technologies to mitigate the
impact of this deadly disease on global health.

Future research attempts should prioritize the
reϐinement and optimization of multi‐input models,
the integration of emerging imaging technologies, and
the development of user‐friendly AI‐driven diagnostic
tools. Additionally, extensive validation studies and
clinical trials are imperative to conϐirm the real‐world
effectiveness of novel diagnostic approaches. Further‐
more, there is a pressing need to explore personalized
medicine strategies tailored to individual patient char‐
acteristics, while simultaneously addressing global
disparities in access to advanced diagnostic and treat‐
ment modalities. By following these paths, the ϐield
can strive towards more accurate diagnosis, person‐
alized treatment regimens, and equitable healthcare
access, ultimately leading to improved outcomes and
reduced mortality rates for individuals affected by
melanoma worldwide.
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