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1. Introduction

-

Fuzzy logic controllers are used successfully in many
application areas, and these include control, classifica
tion, etc. [1],[2],[3],[4],[5],[6],[7]. These systems ba
sed on rules incorporate linguistic variables, linguistic
terms and fuzzy rules. The acquisition of these rules is not
an easy task for the expert and is of vital importance in
the operation of the controller.

The process of adjusting these linguistic terms and
rules is usually done by trial and error, which implies
a difficult task, and for this reason there have been me
thods proposed to optimize those elements that over
time have taken importance, such as genetic algorithms
[8],[9],[10].

A Genetic Algorithm (GA) [9],[10] is a stochastic op
timization algorithm inspired by the natural theory of
evolution. From a principle proposed by Holland [9], GAs
have been used successfully to manage a wide variety
problems such as control, search, etc. [11].

This paper proposes a novel method for genetic opti
mization of the triangular and trapezoidal membership

This paper proposes a novel method for genetic optimi
zation of triangular and trapezoidal membership functions
of fuzzy systems, for hardware applications such as the
FPGA (Field Programmable Gate Array). This method con
sists in taking only certain points of the membership func
tions, with the purpose of giving more efficiency to the
algorithm. The genetic algorithm was tested in a fuzzy con
troller to regulate engine speed of a direct current (DC)
motor, using the Xilinx System Generator (XSG) toolbox of
Matlab, which simulate VHDL (Very High Description Lang
uage) code.
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functions of a fuzzy logic system for hardware applica
tions such as FPGA (Field Programmable Gate Array). This
method involves taking only a small number for points of
the membership functions in order to give greater effi
ciency to the algorithm. The GA has been tested in a fuzzy
logic controller to regulate the speed engine direct cur
rent (DC) using the Matlab [12] platform and XSG [13]
with good results.

This paper is organized as follows: in section 2 we
present an introductory explanation of Genetic Algo
rithms, Fuzzy Inference Systems and FPGAs, section 3
describes the novel method for genetic optimization of
membership functions for FLC in FPGAs, the test and
result the novel genetic optimization of membership fun
ctions for FLC for speed regulate the motor DC are shown
in section 4. Finally, section 5 presents the conclusions

The Genetic Algorithm is an optimization and search
technique based on the principles of genetics and natural
selection. A GA allows a population composed of many
individuals to evolve under specified selection rules to
a final state that maximizes the “fitness” (i.e. minimizes
the cost function) [14].

A GA is inspired by the mechanism of natural selec
tion where stronger individuals are likely the winners in
a competitive environment. Here the GA uses a direct an
alogy of such natural evolution. Through the genetic evo
lution method, an optimal solution can be found and re
presented by the final winner of the genetic game [15].

Throughout a genetic evolution, the fitter chromoso
me has a tendency to yield good quality offspring, which
means a better solution to any problem. In a practical GA
application, a population pool of chromosomes has to be
installed and these can be initially randomly set. The size
of this population varies from one problem to another. In
each cycle of genetic operations, termed as an evolving
process, a subsequent generation is created from the
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Fig. 1.  GA cycle.



chromosomes in the current population. This can only
succeed if a group of these chromosomes, generally cal
led “parents is selected a specific selection routine.
The genes of the parents are mixed for the production of
offspring in the next generation. It is expected that from
this process of evolution, the better chromosome will
create a larger number of offspring, and thus has a higher
chance of surviving in the subsequent generation, emula
ting the survival of the fittest mechanism in nature.
Figure 1 shows the GA cycle.

Of course, the GA is not the best way to solve every
problem, GAs have proven to be a good strategy because
of its optimal results in several areas of application [3],
[16].

The GA has applications in a wide variety of fields to
develop solutions to complex problems, including opti
mization of fuzzy systems, offering them learning and
adaptation, they are commonly called genetic fuzzy sys
tems or fuzzy system hybrids.

Fuzzy systems have been used more and more, beca
use they tolerate imprecise information and can be used
to model nonlinear functions of arbitrary complexity.
A fuzzy system (FIS) consists of three stages: Fuzzifica
tion, Inference and Defuzzification [17]. We describe
below these stages.

Is the interpretation of input values
(numeric) by the fuzzy system, and the obtained output
are fuzzy values.

Let be a linguistic variable and
a fuzzy set associated with a linguistic value . The

translation of a numeric value corresponds to a lin
guistic value associated with a degree of membership,

, and this is known as Fuzzification. The mem
bership degree represents a value of membership
to a fuzzy set [18].

Is basically like the brain of the system,
here the rules of the form if-then that describe this
behavior are used [2]. For example:

If is and and is Then is (1)

where are the inputs, are linguistic
terms and is the output.

Defuzzification Consists in obtaining a numeric value
for the output. This stage basically selects a point that is
the most representative of the action to perform [2]. The
re are several methods to calculate the Defuzzification,
such as the Center of Height (COH), Center of Gravity
(COG), etc. The COG is shown in Equation 2.

(2)

where is the maximum height of the consequent from
rule to rule [2].

In Figure 2, the fuzzy system information processing
is illustrated.
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Fuzzification:

Definition 1.
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Fig. 2. Fuzzy System.

A fuzzy system can be implemented on a general pur
pose computer, or by a specific use of microelectronics
realization. The first offers a great versatility in terms of
ease of development in various high level programs, the
second device is performed in high scale integration,
such as the ASICs [19].

The ASICs offer great advantages for high performan
ce and price reduction is concerned, however, also have
the disadvantage of requiring a high level of production
of the same design to actually be affordable and time to
get in the market is large relative to that of using a FPGA.

The applications of the FPGAs go beyond the simple
implementation of digital logic. The FPGAs can be used to
implement specific architectures to accelerate a particu
lar algorithm. Systems based on FPGAs provide better
performance than their corresponding implementations
in software platforms for general use. A specific architec
ture for an algorithm can have a yield of 10 to 1000 times
higher than an implementation on a DSP (Digital Signal
Processor). Applications that require a great number of
simple operations are suitable for implementation on
FPGA, a processing element can be designed to perform
this operation and several instances of it can be played to
perform parallel processing [20].

An FPGA is a semiconductor device that contains in its
interior components such as gates, multiplexers, etc.
These are interconnected with each other, according to
a given design. These devices use the VHDL programming
language, which is an acronym that represents the com
bination of VHSIC (Very High Speed Integrated Circuit)
and HDL (Hardware Description Language) [13].

Implementing an embedded fuzzy system on an FPGA
is not as easy as it seems, since there are few appropria
ted design tools to achieve this task. Most of the time,
the designer needs to construct every part of the infe
rence system from scratch. Fortunately, there is an in
creasing interest in the development of designing plat
forms the easily achieve this task, such is the case of the
Xfuzzy 2.1 and Xfuzzy 3.0; however, at the present time
they cannot provide VHDL code for trapezoidal member
ship functions for arithmetic calculation. Other imple
mentations of a FIS on an FPGA are reported in [21].

Any hardware implementation of an electronic system
requires a complex methodology to test and validate eve
ry stage in the design process to guarantee its correct
functionality; this is particularly true when the designer
decides to use a HDL to make a design.

The FPGAs are good platforms for fast prototyping of
digital hardware. FPGAs are very effective in implemen
ting FLSs since they allow fast modeling and hardware
verification. FPGAs can be programmed in the system,
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The basic elements of an FPGA are:
1. Configurable logic blocks CLBs, and their structure

and content is called architecture. There are many
types of architectures, which vary largely in comple
xity (from a simple door to more complex modules or
SPLD-like structures). They often include bi-stable or
MOS (Metal Oxide Semiconductor) to facilitate the
implementation of sequential circuits. Other impor
tant modules are the building blocks of I / O (IOB).

2. Interconnection resources, whose structure and con
tent defines the routing architecture.

3. RAM, which is loaded during reset to configure and
connect blocks.

Figure 4 shows these elements.

Figure 5 shows the CHIP Spartan Basic Elements.

-

-

-

The fuzzy logic controller is coded in VHDL, the FLC for
the fuzzification stage, is able to instantly calculate the
degree of membership, using a method to calculate the
slopes [23][24][25], the inference is working with the
max-min [26][27][28] and the defuziffication with the
method of heights.

Figure 6 shows the block diagram in XSG of the FLC for
the regulation of speed of a DC motor, the system inputs
are reset, error , error of change , and the parame-
ters of each membership function for inputs and output
are in total 11. The system only has an output .

The FLC has two inputs and one output, each input and
output contains three membership functions, two trape-
zoidal one triangular. Figure 7 shows the triangular and
trapezoidal membership functions (MF) that are used.

For the optimization of the FLC using GAs, you must
define the chromosome that represents the information
of the individual, which in this case is related to the
universe of discourse and the linguistic terms. Figure 8
shows the chromosome of the GA.

Fig. 4. FPGA Basic Elements.

3. Novel Genetic Optimization
of Membership Functions for Fuzzy Logic
Controller in FPGAs

e t e t

Y t

( ) '( )

( )

without shutting down the system. This functionality
allows modification and tuning of rules and-or fuzzifiers
to achieve better control performance. In order to acce
lerate the design of FLS hardware, it is helpful to have
a design environment, which allows algorithmic specifi
cation of the FLS and eases the automatic synthesis and
verification of FLS hardware. The topic of FLS implemen
tation onto FPGAs has been investigated by several re
searchers. A brief overview of the work done by some
researchers is presented next.

The design of an FPGA implementation is done by
specifying the logic function to develop, either by a CAD
(computer aided design) or through a hardware descrip
tion language. Having defined the function to perform,
the design is transferred to the FPGA. This process pro
gram the configurable logic blocks (CLBs) to perform
a specific function (there are thousands of configurable
logic blocks in the FPGA). The configuration of these
blocks and their interconnections flexibility are the rea
sons why it can get very complex designs. The intercon
nections enable connecting the CLBs. Finally, it has con
figuration memory cells (CMC, Configuration Memory
Cell) distributed throughout the chip, which store all
information necessary for programming programmable
elements mentioned. These cells usually consist of con
figuration RAM and are initialized in the process of load
ing of the configuration [22]. The programmable ele
ments of an FPGA are:
1. Configurable Logic Blocks (CLBs)
2. In/Out Blocks (IOBs)
3. Programmable Interconnection

- By fuse technology and be of OTP.
- By antifusing or by type SRAM cells.

Depending on the manufacturer we can find different
solutions. FPGAs currently available on the market, de
pending on the structure adopted by the logical blocks
that are defined, can be classified as belonging to four
major families shown, in the Figure 3.
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Fig. 3. Block logic a) Symmetrical Array (XILINX), b) Sea of
Gates (ORCA), c) Row Based (ACTEL) and d) Hierarchical
PLD (ALTERA and XILINX).
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Fig. 5. CHIP Spartan of Xilinx Basic Elements.

Fig. 6. Block diagram in XSG of FLC.



a) b)

Fig. 7. Parameters of the Membership Functions. a) MF
trapezoidal, b) MF triangular.

Fig. 8. GA chromosome.

Table 1. Boundary parameters of the chromosome.

Fig. 9. Points of membership functions input and output.

Fig. 10. Range of parameters membership functions.

In Table 1, shows the boundary parameters of the
chromosome.

Figure 9 shows the input of the FLC with fixed and
variable parameters. Each input and output has a size or
8 bits.

The blue points are fixed, the red dots are for para-
meter , the green dots are fixed and the yellow dots
are for parameter .

Figure 10 shows the range of parameters membership
functions.

a b
a

2 1

1

( )

The GA is of multiobjective type [15], which means
that to determine the best individual three evaluations
are performed:

a) Minimum overshoot

(3)

b) Minimum undershoot

(4)

c) Minimum output steady state error (sse)

(5)

The FLC linguistic terms were optimized with the GA,
but the fuzzy rules are not changed. The process of the GA
is shown in Figure 11.

To evaluate the ability of the GA, the FLC was simu-
lated for speed control using a mathematical model of the
plant in Matlab-Simulink [12], as shown in Figure 12.

Fig. 11. Optimization GA.

4. Test and Results the Novel Genetic
Optimization of Membership Functions
for FLC for Speed Regulate the Motor DC
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The FLC has the inputs, error and change of error
, and the output is the control signal . The

inputs are calculated as follows:

(6)

(7)

where is the sampling time.

The reference signal , is given by:

(8)
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Each input and output of the FIS has three linguistic
terms. For the linguistic variable error and change of
error, the terms are {NB, Z, PB} in this case NB is Negative
Big, Z is Zero and PB is Positive Big. For the linguistic
variable control signal the linguistic terms are {BD, H,
BI}, in this case BD is Big Decrement, H is Hold and BI is
Big Increment.

A series of experiments was performed that are listed
in Table 2.

In experiment No. 17 the best FLC was found because
this has the lower error value. Below are the FIS charac-
teristics for experiments 14 and 17.

Figure 13 shows how the GA modified the parameters
of the membership functions for the input .e t( )

VOLUME 4,     N° 4     2010

Fig. 12.  Model.

Table 2. GA Parameters for different experiments.

r t =( ) 15 t � 0
0 t � 0

No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Generations

200
200
200
100
200
150
150
100
200
200
200
100
100
100
100
50
50
300
300
300
200

Crossover
(XOVSP)

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.7
0.7
07
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.8
0.8

Selection
(SUS)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
08
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

Overshoot-
Undershoot

0.4000
0.9104
0.4000
0.0148
0.4124
0.9104
0.1920

0
0.9104
0.9104
0.6600
0.9104
0.0148
0.4124
0.9104
0.0148

0
0.9104
0.0256
0.0148
0.9104

SSE

0.0425
0.1048
0.0425
0.0118
0.0198
0.1048
0.0110
0.0851
0.1048
0.1048
0.0637
0.1048
0.0118
0.0198
0.1048
0.0118
0.0814
0.1048
0.0205
0.0118
0.1048

Error

0.0413
7.7489e
0.0413
0.0118
0.0021
0.0077
0.0027
0.0517
0.0077
0.0077
0.0345
7.75e
0.0118

5.7457e
7.75e
0.0118

2.0788e
7.75e
2.538e
0.0118
0.0077

-3

-3

-3

-3

-3

-3

-3

Time
(sec)

1161.761412
992.011800
769.952523
859.303842
1030.261653
896.357154
689.695587
754.005340
924.325968
839.401213
810.448215
711.466736
804.630357
671.710473
709.538318
822.235179
723.025902
960.829622
941.800589
1391.119402
936.360153
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Fig. 13. FIS for the experiment 14, input e(t).

Figure 14 shows the input modified by the GA.e t'( )

Fig. 14. FIS for the experiment 14, input e'(t).

Figure 15 shows the output of the FIS.y t( )

Fig. 15. Output  FIS for the experiment 14.
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Figure 16 shows the control surface modified by the GA.

Fig. 16.  Control Surface for experiment 14.

Figure 17 shows the output signal of the PD Incremental FLC for experiment 14.

Fig. 17. Velocity of the motor.

Figure 18 shows convergence the GA.

Fig. 18. GA convergence for experiment 14.
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Figure 19 shows the best experiment for the input .e t( )

Fig. 19. Best FIS for the input e(t)).

'( )Figure 20 shows the input modified by the GA.e t

Fig. 20. Best FIS for the input e'(t).

( )Figure 21 shows the output of the FIS modified by the GA.y t

Fig. 21. Best FIS for the output (t).y
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Figure 22 shows the control surface modified by the GA.

Fig. 23. Velocity

Figure 24 shows convergence the GA for the best experiment.

Fig. 24. Shows the GA convergence error for experiment 17.

Fig. 22. Control Surface.

Figure 23 shows the output signal close loop of the FLC for experiment 17.
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5. Conclusions
We proposed a novel method for genetic optimization

of a fuzzy logic controller in FPGA for the regulation of
speed of a DC motor, were the method optimizes three
triangular and trapezoidal membership functions for the
two inputs and one output of the FLC.

The genetic algorithm optimizes only three of the
eleven parameters of the membership functions, the algo-
rithm proved to be very efficient with good results. The
objective function of the GA considers three characteris-
tics: overshoot, undershoot and steady state error, so this
makes it a multiobjective GA.

Each FIS was simulated in an Incremental PD Fuzzy
Con-troller for speed control of the DC motor. The best FLC
was obtained in 50 generations with 70% crossover and
80% selection, with a result of zero of overshoot and
under-shoot steady state error of 2.0788e-3, in a time of
723.025902 seconds with a speed of 15 rpm. Matlab-
Simulink and Xilinx System Generator was used to perform
the simulations.
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