
Abstract:

1. Introduction

This paper applies a new Kalman Filter Recurrent Neural
Network (KFRNN) topology and a recursive Levenberg-Mar
quardt (L-M) learning algorithm capable to estimate para
meters and states of highly nonlinear unknown plant in
noisy environment. The proposed KFRNN identifier, learned
by the Backpropagation and L-M learning algorithm, was
incorporated in a direct and indirect adaptive neural con
trol schemes. The proposed control schemes were applied
for real-time recurrent neural identification and control
of a continuous stirred tank bioreactor model, where fast
convergence, noise filtering and low mean squared error
of reference tracking were achieved.
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The universal approximation abilities of the artificial
neural networks to approximate complex non-linear rela-
tionships without prior knowledge of the model struc-
ture, makes them a very attractive alternative to the clas-
sical modeling and control techniques [1], [2], [3]. This
property has been proved by the universal approximation
theorem [3]. Among several possible network architec-
tures the ones most widely used are the Feedforward
(FFNN) and the Recurrent Neural Networks (RNN). In
a feedforward neural network the signals are transmitted
only in one direction, starting from the input layer, sub-
sequently through the hidden layers to the output layer,
which requires applying a tap delayed global feedbacks
and a tap delayed inputs to achieve a nonlinear autore-
gressive moving average neural dynamic plant model.
A recurrent neural network has local feedback connec-
tions to some of the previous layers. Such a structure is
suitable alternative to the first one when the task is to
model dynamic systems, and the universal approximation
theorem has been proved for the recurrent neural net-
works too. The preferences given to recurrent neural net-
work identification with respect to the classical methods
of process identification are clearly demonstrated in the
solution of the “bias-variance dilemma” [3]. Further-
more, the derivation of an analytical plant model, the
parameterization of that model and the Least Square
solution for the unknown parameters have the following
disadvantages: (a) the analytical model did not include
all factors having influence to the process behavior; (b)
the analytical model is derived taking into account some

simplifying suppositions which not ever match; (c) the
analytical model did not described all plant nonline-
arities, time lags and time delays belonging to the pro-
cess in hand; (d) the analytical model did not include all
process and measurement noises which are sensor and
actuator dependent. In (Sage, [4]) the method of inva-
riant imbedding has been described. This method seemed
to be a universal tool for simultaneous state and parame-
ter estimation of nonlinear plants but it suffer for the
same drawbacks because a complete nonlinear plant mo-
del description is needed. Furthermore, the managing of
noisy input/output plant data is required to augment the
filtering capabilities of the identification RNNs, [5].
Driven by these limitations, a new Kalman Filter Recur-
rent Neural Network (KFRNN) topology and the recursive
Backpropagation (BP) learning algorithm in vector-ma-
trix form has been derived [6] and its convergence has
been studied [6], [7]. But the recursive BP algorithm,
applied for KFRNN learning, is a gradient descent first
order learning algorithm which does not allow to
augment the precision and accelerate the learning [5],
[7]. Therefore, the aim of this paper was to use a second
order learning algorithm for the KFRNN, as the Leven-
berg-Marquardt (L-M) algorithm is, [8]. The KFRNN with
L-M learning was applied for Continuous Stirred Tank
Reactor (CSTR) model identification [9], [10]. The appli-
cation of KFRNNs together with the recursive L-M could
prevent all the problems caused by the use of the FFNN,
thus improving the learning and the precision of the
plant state and parameter estimation in presence of
noise. Here, the parameters and states, obtained from
the KFRNN identifier will be used in order to design
a Direct and Indirect Adaptive Neural Control (DANC and
IANC) of CSTR bioprocess plant model.

(1)

2. Kalman Filter RNN
This section is dedicated to the KFRNN topology, the

recursive Backpropagation and the recursive Levenberg-
Marquardt algorithms for the KFRNN learning. The KFRNN
is applied as a state and parameter estimator of nonlinear
plants.

Let us consider the linearized plant model (1), (2),
represented in a state-space form:

(2)

Where: means mathematical expectation; the pro-
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cess and measurement noises , are white,
with , and the initial state inde-
pendent and zero mean for all , , with known variances

, where
if , and otherwise. The optimal Kalman filter

theory is completely described in [4], and we would not
repeat it here. For us the Kalman Filter (KF) is a full rank
optimal state estimator capable to estimate the system
states, to filter the process and measurement noises, ta
king in hand all plant information available like: input/
output plant data, all parameters of the plant model (1),
(2), and the given up noise and initial state statistics
(mean and variance). The basic Kalman filter equations
for the estimated state and output variables are given by:

(3)

(4)

(5)

Where: is the estimated state vector with
dimension is a closed-loop KF state
matrix; is the estimated plant output vector
variable with dimension is the optimal Kalman
filter gain matrix with dimension . This gain
matrix is computed applying the optimal Kalman filtering
methodology given in [4]. So, the KF performed noise
filtration by means of an optimal closed-loop feedback
which has the drawback that the feedback amplified the
noise components of the error, especially when the
feedback gain is high. The second drawback is that the KF
design needs complete plant parameter and noise
information, which means that if the plant data are in
complete the process noise level is augmented. To over
come this we need to take special measures like to aug
ment the filtering capabilities of the KF. The third draw
back is that the KF could not estimate parameters and
states in the same time processing noisy measurements
with unknown noise statistics, and it will be our task. To
resolve this task we need to derive the topology and the
BP learning algorithm of a new recurrent KF-like neural
network subject of learning and capable to estimate pa
rameters and states in the same time. First of all we could
rewrite the equation (3) defining a new extended input
vector, containing all available input/output informa
tion issued by the plant, and second we could modify
the output equation (5), so to convert it to an output
noise filter. After that we obtain:
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The obtained new KF RNN topology is given in Fig. 1.
The first layer of the KFRNN represented the plant

model (equations (10)-(13)) and the second layer -
represented the output noise filtering model (equations
(14)-(18)). The KF RNN topology is described by the
following equations:

(10)

(11)

(12

(13)

(14)

(15)

(16)

(17)

(18)

Where: are vectors of state, output, and augmen
ted input with dimensions , respectively,

is an dimensional input of the feedforward
out put layer, where and are the output and

input of the hidden layer; the constant scalar
threshold entries are , respectively; is
a pre-synaptic activity of the output layer; the
super-index means vector transpose; are

and block-diagonal weight matrices;
and are and - augmented
weight matrices; and are and
threshold weights of the hidden and output layers; ,

are vector-valued tanh(.) or sigmoid(.) -activation
functions with corresponding dimensions. Here the input
vector and the input matrix of the KF RNN are aug
mented so to fulfill the specifications (7) and the matrix

corresponded to the feedback gain matrix of the KF.
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Fig. 1. Block-diagram of the KFRNN topology.



matrices , are denoted by ,
, respectively, where (24), (30) represented their

learning as an element-by-element vector products;
are error vectors (see Fig. 2), predicted by the

adjoint KF RNN model. So, the KF RNN is capable to issue
parameter and state estimations for control purposes,
thanks to the optimization capabilities of the BP learning
algorithm, applying the “correction for error” delta rule
of learning (see Haykin, [3]). The stability of the KF RNN
model is assured by the activation functions bo-
unds and by the local stability weight bound conditions
given by (12), (17). The stability of the KF RNN move-
ment around the optimal weight point has been proved
by one theorem and the rate of convergence lemma, (see
the Ph.D. thesis of Mariaca [7]). It is stated below.

Theorem of stability of the BP KF RNN used as a plant
identifier [7]: Let the KF RNN topology is given by equa
tions (10)-(18) (see Fig.1) and the nonlinear plant mo
del, is as follows:

(31)

(32)

Where: are output, state and input
variables with dimensions , respectively; ,

are vector valued nonlinear functions with respec-
tive dimensions.

Under the assumption of KF RNN identifiability made,
the application of the BP learning algorithm for

, in general vector-matrix form, described by
equation (19)-(30), and the learning rates
(here they are considered as time-dependent and norma
lized with respect to the error) are derived using the
following Lyapunov function:

(33)

Where: and are given by:
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The dimension of the state vector of the KF RNN is chosen
using the simple rule which is: . From Fig.1 we
could see that here we have a two layer Jordan canonical
topology with a global feedback which filtered the pro
cess noise better then a two layer feedforward topology
containing input and output tap delays representing
a successive noise sensitive NARMA model, [6].

So the KF RNN topology corresponded functionally to
the KF definition (6)-(9) and ought to be learnt applying
the BP learning algorithm derived using the adjoint KF
RNN (see Fig. 2) based on KF RNN topology applying the
diagrammatic method, [11].

The BP learning algorithm, expressed in vector-matrix
form is as follows:
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Where: , are derivatives of the tanh acti-
vation functions; is a general weight, denoting each
weight matrix in the KF RNN model, to
be updated; , is the weight correction
of ; is an L-dimensional output of the approximated
plant taken as a reference for KF RNN learning; , are
learning rate parameters; is an weight correction of

; is an weight correction of ; is an weight
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Fig. 2. Block-diagram of the adjoint KFRNN topology.
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are vectors of the weight estimation error and
and denoted the

ideal neural weight and the estimated neural weight at
the k-th step, respectively, for each case.
Then the identification error is bounded, i.e.:

(34)

(35)

Where the condition for is fulfilled when
the maximum learning rate is chosen in the limits, given
below:

For fulfillment we have the condition:

Note that changes adaptively during the lear
ning process of the network, where:

Here all: the unmodeled dynamics, the approximation
errors and the perturbations, are represented by the d-
term, and the complete proof of that theorem and the
convergence lemma for (36) are given in the Appendix A
and can be seen also with more details in [7].

The general recursive L-M algorithm of learning, [5],
[7], [8] is given by the following equations:

Where: is a general weight matrix and
under modification; is the covariance matrix of the

estimated weights updated; is an -dimensional
gradient vector; is the KFRNN output vector which
depends of the updated weights and the input; is an
error vector; is the plant output vector, which is in fact
the target vector. Using the same KFRNN adjoint block
diagram (see Fig.2), it was possible to obtain the values
of the gradients for each updated weight, propa-
gating the value through it. Following the block
diagram of Fig. 2, equation (37) was applied for each ele-
ment of the weight matrices in order
to be updated. The corresponding gradient components
(40) are obtained as follows:
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This section is dedicated to the topology, the BP and
the L-M algorithms of RTNN learning. The RTNN could be
obtained from the KFRNN removing the output local and
global feedbacks. The RTNN was used as a feedback/feed-
forward controller.

The RTNN model and its learning algorithm of dynamic
BP-type, together with the explanatory figures and stabi-
lity proofs, are described in [6], [7], so only a short des-
cription will be given here. The RTNN topology, derived in
vector-matrix form, was given by the following equations:

(53)

(54)

Therefore, the Jacobean matrix could be formed as:

The matrix was computed recursively by the
equation:

Where the , and matrices were given as follows:

(51)

The matrix had dimension , whereas the
second row had only one unity element (the others were
zero). The position of that element was computed by:

(52)

After this, the given up topology and learning were
applied for the CSTR system identification.
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Where: are vectors of state, output, and augmen-
ted input with dimensions , respectively,
is an dimensional input of the feedforward output
layer, where and are the output and
input of the hidden layer; the constant scalar threshold
entries are , respectively; is a
pre-synaptic activity of the output layer; the super-index

means vector transpose; is block-diagonal
weight matrix; and are and -
augmented weight matrices; and are and

threshold weights of the hidden and output layers;
are vector-valued tanh or sigmoid -activa-

tion functions with corresponding dimensions. Equation
(55) represents the local stability condition imposed on
all blocks of . The dimension of the state vector of the
RTNN is chosen using the simple rule of thumb which is:

.

The same general BP learning rule (19) was used here.
Following the same procedure as for the KFRNN, it was
possible to derive the following updates for the RTNN
weight matrices:

(60)

(61)

(62)

(63)

(64)

(65)

Where are weight corrections of the of the
learned matrices , and , respectively; , and

are error vectors; is a state vector; and are
diagonal Jacobean matrices, whose elements are deriva-
tives of the tanh activation functions (see equations (21)
and (26)). Equation (64) represents the learning of the
full feedback weight matrix of the hidden layer. Equation
(65) gives the learning solution when this matrix is dia-
gonal , which is the present case. The initial values of
the weight matrices during the learning are chosen as
arbitrary numbers inside a small range. The stability of the
RTNN model used as a direct controller is assured by the
activation functions bounds and by the local sta-
bility weight bound condition given by (55). The stability
of the RTNN movement around the optimal weight point
has been proved by one theorem (see the Ph.D. thesis of
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Mariaca [7] for more details).
Theorem of stability of the BP RTNN used as a direct

system controller [7]: Let the RTNN with Jordan Canonical
Structure is given by equations (53)-(59) and the
nonlinear plant model is given by (31), (32). Under the
assumption of RTNN identifiability made, the application
of the BP learning algorithm for , in
general matricial form, described by equation (19), (63)-
(65) without momentum term, and the learning rate
(here it is considered as time-dependent and normalized
with respect to the error) are derived using the following
Lyapunov function:

(66)

Where: and are given by:

Where:

are vectors of the estimation error and and
denoted the ideal neural weight and the

estimate of the neural weight at the k-th step, respec-
tively, for each case.

Let us define: , and
, where , and
, where is a vector composed by all

weights of the RTNN, used as a system controller, and
is an Euclidean norm in .

Then the identification error is bounded, i.e.:

(67)

(68)

Where the condition for fulfillment is that
the maximum rate of learning is inside the limits:

and for , we have:

(69)

Note that changes adaptively during the learning
process of the network, where:

Here all: the unmodelled dynamics, the approximation
errors and the perturbations, are represented by the
-term, and the complete proof of that theorem and the

rate of convergence lemma, are given in [7].

The general recursive L-M algorithm of learning [5],
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[7], [8] is given by equations (37)-(40), where is the
general weight matrix under modification;
is the RTNN output vector; is an error vector; is the
plant output vector. Using the RTNN adjoint block dia-
gram [5], it was possible to obtain the values of for
each updated weight propagating . Applying equa-
tion (40) for each element of the weight matrices

, the corresponding gradient components are ob-
tained as:

(70)

(71)

(72)

(73)

(74)

Therefore the Jacobean matrix could be formed as:

(75)

The matrix was computed recursively by equa-
tions (49)-(52). Next, the given up RTNN topology and
learning were applied for CSTR system control.

This section is dedicated to the design of direct and
indirect (sliding mode) adaptive control system using the
KF RNN as a nonlinear plant identifier. The RTNN was used
as a feedback/feedforward controller in the case of direct
adaptive neural control.

This section described the direct adaptive control
using KFRNN as plant identifier and RTNN as a plant con-
troller (feedback / feedforward). The block-diagram of
the control system is given in Fig. 3. The following study
described the linearized model of that closed-loop con-
trol system.

Let us present the following z-transfer function repre-
sentations of the plant, the state estimation part of the
KFRNN, and the feedback and feedforward parts of the
RTNN controller:
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4. Adaptive Control Systems Design

4.1. Direct Adaptive Neural Control Scheme

Fig. 3. Block-diagram of the closed-loop neural control
system.
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(76)

(77)

(78)

(79)

The control systems z-transfer functions (76)-(79)
are connected by the following equation, which is deri-
ved from Fig. 3, and is given in z-operational form:

(80)

(81)

Where: represented a generalized noise term. The
RTNN and the KFRNN topologies were controllable and
observable, and the BP algorithm of learning was conver-
gent, [5], [7], so the identification and control errors
tended to zero:

(82)

(83)

This means that each transfer function given by equa-
tions (76)-(79) was stable with minimum phase. The clo-
sed-loop system was stable and the feedback dynamical
part of the RTNN controller compensated the plant dyna-
mics. The feedforward dynamical part of the RTNN con-
troller was an inverse dynamics of the closed-loop system
one, which assured a precise reference tracking in spite
of the presence of process and measurement noises.

The indirect adaptive control using the RTNN as plant
identifier has been described in, [5]. Later the proposed
indirect control has been derived as a Sliding Mode Con-
trol (SMC) and applied for control of unknown hydrocar-
bon biodegradation processes, [6], using the KF RNN
identifier with BP learning. Here we applied the KF RNN
identifier with L-M learning. The block diagram of the in-
direct adaptive control scheme is shown in Fig. 4. It con-
tains identification and state estimation KF RNN and
a sliding mode controller.

The stable nonlinear plant is identified by a KF RNN
model with topology, given by equations (10)-(18) lear-

1 1

2 2

1 2

1 2

4.2. Indirect Adaptive Control Scheme
(Sliding Mode Control)

Fig. 4. Block diagram of the closed-loop system containing
KF RNN identifier and a SMC.
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ned by the stable BP-learning algorithm, given by equa-
tions (19)-(30), or using the second order LM-learning
algorithm, given by equations (37)-(52). The simplifica-
tion and linearization of the neural identifier equations
(10)-(18), omitting the term, leads to the next
local linear plant model, extracted from the complete KF
RNN model:

(84)

(85)

Where is the derivative of the activation function
and , is supposed.

In [12], the sliding surface is defined with respect to
the state variables, and the SMC objective is to move the
states form an arbitrary space position to the sliding sur-
face in finite time.

In [13], the sliding surface is also defined with res-
pect to the states but the states of the SISO systems are
obtained from the plant outputs by differentiation. In
[14], the sliding surface definition and the control objec-
tives are the same. The equivalent control systems design
is done with respect to the plant output, but the reacha-
bility of the stable output control depended on the plant
structure.

In [6], the sliding surface is derived directly with res-
pect to the plant outputs which facilitated the equivalent
SMC systems design. Let us define the following sliding
surface equation as an output tracking error function:

(86)

Where: is the Sliding Surface Error Function (SSEF)
defined with respect to the plant output; is the sys-
tems output tracking error; are parameters of the desi-
red stable SSEF; is the order of the SSEF. The tracking
error in two consecutive moments of time is defined as:

(87)

Where are L-dimensional reference and out-
put vectors of the local linear plant model. The objective
of the sliding mode control systems design is to find
a control action which maintains the systems error on the
sliding surface which assure that the output tracking er-
ror reaches zero in steps, where . So, the control
objective is fulfilled if:

(88)

Now, let us to iterate (85) and to substitute (84) in it
so to obtain the input/output local plant model, which
yields:

(89)

From (86)-(87), and (89) it is easy to obtain:
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The substitution of (89) in (90) gives:

(91)

As the local approximation plant model (84), (85), is
controllable, observable and stable (see [6], [7]), the
matrix is diagonal, and , then the matrix pro-
duct (HB), representing the plant model static gain, is
nonsingular, and the plant states are smooth non-
increasing functions. Now, from (91) it is easy to obtain
the equivalent control capable to lead the system to the
sliding surface which yields:

(92)

Following [12], the SMC avoiding chattering is taken
using a saturation function instead of sign one. So the
SMC takes the form:

(93)

The SMC substituted the multi-input multi-output
coupled high order dynamics of the linearized plant with
desired decoupled low order one.

The CSTR model given in [9], [10] was chosen as an
example of RNN applications in system identification and
control of biotechnological plants. Numerical values for
the parameters and nominal operating conditions of this
model are given in Table 1.

The CSTR is described by the following continuous
time nonlinear system of ordinary differential equations:

(94)
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5. Description of the CSTR Bioprocess Plant

Table 1. Parameters and operating conditions of the CSTR.
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In this model it is enough to know that within the
CSTR, two chemicals are mixed and that they react in
order o produce a product compound at a concentra
tion , and that the temperature of the mixture is

. The reaction is exothermic and it produces heat
which slows down the reaction. By introducing a coolant
flow-rate , the temperature can be varied and hence
the product concentration can be controlled. Here is
the inlet feed concentration; is the process flow-rate;

and are the inlet feed and coolant temperatures,
respectively; all of which are assumed constant at nomi
nal values. Likewise, , , , , , , , and
are thermodynamic and chemical constants related to
this particular problem. The quantities , , and ,
shown in Table 1, are steady values for a steady operating
point in the CSTR. The objective was to control the pro
duct compound by manipulating . The operating
values were taken from [9] and [10], where the perfor
mance of a control system is reported.

Some simulation results of the CSTR biotechnological
plant neural identification and control are summarized in
this part.
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Simulation Results

6.1. Simulation Results of Bioprocess Plant
Neural Identification

Results of detailed comparative graphical simulation
of CSTR KFRNN plant identification by means of the BP
and the L-M learning are given in Fig. 5 and Fig. 6. A 10%
white noise with different variance (SEED parameter) for
each run was added to the plant inputs and outputs and
the behavior of the plant identification was studied accu
mulating some statistics of the final MSE% ( ) for KFRNN
BP and L-M learning. The results for 20 runs are given in
Tables 3 and 4.

The mean average cost for all runs ( ) of KFRNN plant
identification, the standard deviation ( ) with respect to
the mean value, and the deviation ( ) are presented in
Table 2 for the BP and L-M algorithms. They were com
puted by the formulas:

(96)

The numerical results given in Tables 2, 3, and 4 are
illustrated by the bar-graphics in Figures 7a)and b).

-

-

'
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Fig. 5. Graphical results of identification using BP KFRNN learning. a) Comparison of the plant output (continuous line)
and KFRNN output (pointed line); b) state variables; c) comparison of the plant output (continuous line) and KFRNN
output (pointed line) in the first instants; d) MSE% of identification.
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Fig. 6. Graphical results of identification using L-M KFRNN learning. a) Comparison of the plant output (continuous line)
and KFRNN output (pointed line); b) state variables; c) comparison of the plant output and KFRNN output in the first
instants; d) MSE% of identification.
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Table 2. Standard deviations and mean average values of
identification validation using the BP and L-M algorithms of
KF RNN learning.

Table 3. MSE% of 20 runs of the identification program
using the KFRNN BP algorithm.

Table 4. MSE% of 20 runs of the identification program
using the KFRNN L-M algorithm.

The comparative results showed inferior MSE%, , and
for the L-M algorithm with respect to the BP one.

The graphical simulation results of DANC using the L-M
algorithm of learning are presented in Fig.8 where the
final MSE% was 0.854% for the L-M algorithm of learning.
Similar results are given on Fig.9 for the indirect SMC con-
trol. The final value of the MSE% obtained for the indirect
SMC using the L-M algorithm of learning for the KFRNN
identifier is of 0.434%.

The graphical results and the obtained final MSE%
showed that the indirect SMC control is about twice times
more precise that the DANC due to the utilization of the
estimated states and parameters in that case, and also
due to the SMC algorithm of control which substitute the
plant dynamics by a decoupled lower order one.

This paper proposed a new KFRNN model for system
identification and state estimation of nonlinear plants.
The KFRNN is learnt by the first order BP and by the se-
cond order L-M recursive learning algorithms. The valida-
ting results of system identification reported here gave
priority of the L-M algorithm of learning over the BP one
which is paid by augmented complexity. The estimated
states and parameters of the plant, obtained by this Kal-
man filter recurrent neural network model are used for
direct and indirect adaptive trajectory tracking control
system design. The applicability of the proposed neural

(
)

6.2. Simulation Results of Bioprocess Plant
Adaptive Neural Control

7. Conclusions
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Fig. 7. Comparison between the final MSE% for 20 runs of the identification program: a) using BP algorithm of learning,
b) using L-M algorithm of learning.

Fig. 8. Detailed graphical simulation results of CSTR plant DANC using L-M learning. a) comparison between the plant
output and the reference signal; b) comparison between the plant output and the reference signal in the first instants;
c) control signal; d) MSE% of control.
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control system, learnt by the BP and L-M algorithms, was
confirmed by simulation results with a CSTR plant. The
results showed good convergence of the two algorithms
applied. The graphical and numerical validation identifi-
cation results showed that the L-M algorithm of learning
is more precise but more complex then the BP one. The
control results of DANC and IANC (SMC) showed a great
precision of reference tracking (the final MSE% is 0.854%
for the DANC and 0.434 for the indirect SMC). The better
results obtained with the indirect SMC are due to the uti-
lization of the estimated states and parameters in that
case, and also due to the SMC algorithm of control which
substitute the plant dynamics by a decoupled lower order
one.
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Let the Extended Recurrent Trainable Neural Network with
Jordan Canonical Structure given by (1), (2), (3), (4), (5), (6),
(7) and the nonlinear plant model as follows:

(A.1)
(A.2)

and the plant and activation functions fulfill the following
assumptions:

The plant dynamics is locally Lipchitz, so the
nonlinear functions , are as:

and , are modeling errors, which reflex the effect of
unmodelled dynamics.

The activation functions have the following
Taylor approximation:

with the approximation error bound given by:

and the output signal error is defined by:

Now, let us define the state estimation error, add and subtract
the RTNN to the last equation and apply the Assumption 2,
then:

Let us now define the output identification error and put it in
terms of the state estimation error as:
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Appendix A: Stability proof of the theorem for KF RNN
topology and BP learning.

Where: the term ; the are the higher
order terms in the Taylor series approximation;

is the unmodeled dynamics; is an offset.
If Assumptions 1 and 2 fulfill, the learning algorithm for the
RTNN is given by (8) and the learning parameters , are
normalized and depended on the output error structure.
Then, the approximation error is bounded.
Consider a Lyapunov candidate function as:

(A.3)

In which and are given by:

(A.4)

(A.5)

Where: are vectors of the estimation error and
denoted the ideal neural

weight and the estimate of neural weight at the k-th step,
respectively, for each case.
Let us consider the equation (A.4). The change of the Lyapunov
function in two consecutive samples due to the training process
is obtained by:

(A.6)

Then, defining as the difference between two consecu-
tive error samples, then the equation (A.6) becomes:

(A.7)

Where: can be defined as:
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Putting all weights into one vector as
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which represents the weight vectors constructed by their
columns. Also let:

(A.10)
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Where: and represented the learning rate matrices, the momentum rate matrices
corresponding to the matrix weights , respectively, and

. Moreover, and are
two positive constants, and is an identity matrix, where the general symbol is substituted by , respectively. We could
define as:

(A.11)

(A.12)

(A.13)

Let:

(A.14)

Then:

(A.15)

and

(A.16)

Proposing: , then:

(A.17)

According to the Lyapunov stability theory, if convergence must be guaranteed, then , thus , and:

(A.18)
That is:

(A.19)
Let: . Thus, as long as:

(A.20)
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Note that is the Euclidean norm, therefore:

(A.21)

Now let: , and , then:

(A.22)

Now, working with equation (A5), we have:

If we consider the change of the Lyapunov function in two consecutive samples due to the training process, we obtain:

(A.23)
Now substituting the following quantities:

We could obtain:

(A.24)

And if the updated learning law is given by (19), then:

�+ , � � * ��+ ,�k k= = maxmax k
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Now we could use the followings trace properties:

Note that is the Euclidean norm, is a constant and are weight matrices. Then:

So, due to the learning matrix law given by the equations (19)-(29), and collecting the errors as a common factor, using trace properties,
we can rewrite as:

tr AB tr BA tr A tr B tr C tr A+B+C AB B A tr AA tr A A A
tr A tr A tr A tr A

A , A , B, C, D

L k

( ) = ( ); ( )+ ( )+ ( ) = ( ); ( ) = ; ( ) = ( ) = ;
( ) = ( ); ( ) = ( )

( )

( )

T T T T T

T

� �
� �

�� �

	

2
2

2 1 2

2

VOLUME 4,     N° 4     2010



Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 51

Due to the error definition, collecting and put the following equation as a function of , we get:

First and second traces gave us four terms as:

, and

Using the following inequality [6], [7]: , which is valid for any , and for any positive defi-
nite matrix , we obtained:

Analyzing term by term and applying the Rayleigh inequality:

we could obtain:

e k( )
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Now, making inner terms equal to one as in the unit circle condition for discrete time, as:

At last we get the final condition:

(A.25)

Where: the unmodeled dynamics and/or perturbations term is given by:

(A.26)

Applying the Lemma of the KF RNN rate of convergence, [6], [7], for the result (A.26) we could conclude that: the - term must be
bounded by the weight matrices and the learning parameter, in order to obtain the final result:

As a consequence:
From equations (A.22) and (A.25) we easily could get the equation (20). Therefore the boundedness of the is guaranteed.

Applying the limit's definition, the identification error bound condition is obtained as:

Starting from the final result of the Theorem of BP KF RNN stability:

After an analysis of the iterations from , we get:

Dividing by and applying the limit's definition, the identification error bound condition is obtained in the final form:

From here we could see that the term must be bounded by weight matrices and the learning parameter, in order to obtain:

d k

d

k

k

d

( )

=0

Lemma of KF RNN rate of convergence.

Proof.
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