
Abstract:

1. Introduction

In a dynamic robot navigation system the robot has to
avoid both static and dynamic objects on its way to des-
tination. Predicting the next instance position of a moving
object in a navigational environment is a critical issue as it
involves uncertainty. This paper proposes a fuzzy rule-
based motion prediction algorithm for predicting the next
instance position of moving human motion patterns. Fuzzy
rule base has been optimized by directional space approach
and decision tree approach. The prediction algorithm is
tested for real-life bench- marked human motion data sets
and compared with existing motion prediction techniques.
Results of the study indicate that the performance of
the predictor is comparable to the existing prediction
methods.

Keywords: short term motion prediction, fuzzy rule base,
rule base optimization, fuzzy predictor algorithm, direc-
tional space approach, decision tree approach.

For an autonomous mobile robot, performing a navi-
gation-based task in an unknown environment to detect
and avoid encountered obstacles is an important issue.
It is also a key function for the robot body safety, as well
as for the task continuity. Generally, the architecture for
the vision-based robotic systems with the ability of ob-
stacle detection and avoidance are relatively complica-
ted. This may be attributed to the extraction of infor-
mation from a stream of the site images consisting of the
static and dynamic obstacles. In a dynamic robot naviga-
tion system, the robot has to acquire the information on
moving objects and predict their future positions in order
to make path planning efficient. Short term object mo-
tion prediction in a dynamic robot navigation environ-
ment refers to the prediction of next instance position of
a moving object based on the previous history of its
motion. The living beings and vehicles characterize the
dynamic environment and exhibit motion in various di-
rections with different velocities.

Real-life data often suffer from inaccurate readings
due to environmental constraints, sensors, size of the
objects and possible change in motion pattern of the
moving objects. This needs the system to be robust to
handle these uncertainties and predict next instance
object position as accurate as possible within a short
duration. As a result, object motion prediction still con-
tinues to be an active field of research. Research litera-
ture has addressed solutions to the short term object
motion predictions with different methods such as: curve

fitting or regression methods [7], [18], neural network
based approaches [1], [2], [4], Hidden Markov stochastic
models [19], Bayesian Occupancy Filters [5], Extended
Kalman Filter [9], [12], Stochastic prediction model [17],
regression methods [18], [7] proposed in the literature,
sample the positions of moving object at definite time
intervals, and fit the information to the regression equa-
tion. With the current sampling positions, the regression
model predicts the position of the object for the next
sampling duration. The main drawback of this method is
the estimation of model coefficients in real-life environ-
ment, which makes the system complex. Amalia Foka

[1],[2] have proposed a Polynomial Neural Network
(PNN) architecture for object motion prediction. The PNN
uses a second order polynomial equation as a transfer
function at each node. Training is done using evolutio-
nary method. The algorithm needs huge amount of data
sets for training and the performance of the algorithm is
poor in case of unseen datasets. Relative Error Back Pro-
pagation neural network [4] for object motion prediction
considers rectilinear motions of moving objects. The
algorithm needs huge dataset for training and quality of
results depend on the training data set used. Statistical
methods for estimating obstacle locations using statis-
tical features have been proposed such as Hidden Markov
Model [19] to predict object motion. The method is com-
putationally intensive. The method proposed by R. Mad-
havan [12] uses Extended Kalman Filter. Each pre-
diction step is dependent on the previous sequence of
observations made and the quality of prediction reduces
with increase in time and space horizon. C. Laugier and S.
Petti [5] have proposed Baysean programming framework
to predict the future position of moving object. The navi-
gational environment is represented as a four dimensio-
nal occupancy grid. The method is not suitable for large
scale environment because of intrinsic complexity and
numerical computations. R. Irajit [15] in their work
have proposed a methodology based on Artificial Poten-
tial Fields (APF) method which provides simple and effec-
tive motion planners for practical path planning in fully
dynamic environments. They have exploited the fuzzy
modeling to define Fuzzy Artificial Potential Fields
(FAPF) which provides a real-time and flexible path plan-
ning. It is shown that FAPF paves a way to merge both
global and local path planning strategies. Simulations
show that the planner is both very fast and capable of
handling the local minima which can trap mobile robots
before reaching the goal. Based on the literature survey
on motion prediction models it is observed that i)The
existing models lack flexibility in handling the uncer-
tainties of the real-life situations; ii) Probabilistic
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models sometimes fail to model the real-life uncertain-
ties; iii) The existing prediction techniques show poor
response time due to their complex algorithmic structure;
iv) Most of the approaches validate the results with simu-
lated data or simple navigational environments.

The present work overcomes these difficulties with
a novel solution for short term motion prediction using
fuzzy rule-based prediction technique. History of moving
object motion positions is captured in the form of fuzzy
rule base, and the next instance object position is predic-
ted using fuzzy inference process. Because of the multi-
valued nature of fuzzy logic, this approach enjoys high
robustness in dealing with noisy and uncertain data.
However, direct implementation of the rule base is not
suitable for real-life navigation systems due to the for-
mation of huge number of rules. The total number of
fuzzy rules to be used are directly proportional to the
number of fuzzy sets defined for the application and the
number of fuzzy members present in each fuzzy set.
Inconsistent and redundant rules identified in the rule
base are optimized by defining directional space within
navigational space and decision tree approach.

The authors in their previous work [16] have imple-
mented the extraction of objects of interest within the
robotic navigational environment from the stereo vision
system. Hence the focus of the present work is only limi-
ted to the prediction of the moving object's motion
within the navigational environment.

The paper is organized as follows. In section 2, fuzzy
rule-based object motion prediction process is explained.
Sections 3 and 4 discuss the optimization of the fuzzy
rule-base using directional space approach and decision
tree approach.

In section 5 the fuzzy rule-base implementation
details are presented. Experimental results are presented
in section 6. Finally, concluding remarks are given in
section 7.

The difficulty of dynamic obstacle motion prediction
lies on the uncertainty of obstacle motions. In the pro-
posed work we have considered intentional motion model
for the moving objects within the navigational environ-
ment. Motion state of an obstacle at time is generally
represented by which represent the posi-
tion, velocity and acceleration of the object at time . In
this model an obstacle moves in a scheduled route, such
as a predetermined destination, or a programmed route.
The obstacle may also try to avoid collision with others.
In this case we have,

(1)

Where represents the variations in the accelera-
tions resulting from any internal or external forces of the
obstacle and are any two constants that specify the
tendency of acceleration change. The function de-
pends on the particular environmental conditions. It dif-
fers from the random motion model in the way that,
cannot be described by any probability distribution. The
acquisition of relies very much on the background

2. Fuzzy Rule-based Object motion
prediction

t
p v a

a t a t dt

e

a

( ( ), ( ), ( ))

( ) = ( ) +

( )

t t t
t

e t

t

e t

e t

e t

� �

�

( )

( )

( )

( )

knowledge of the obstacles and a through observation of
the history of motion of the moving objects. Fuzzy logic
is an important branch of intelligent robotics. It does not
need to establish accurate mathematical models and it is
easy to construct its control structure with good robust-
ness.

In the proposed work, the navigational environment
is modeled as a fuzzy world model. The robot is capable of
visualizing the navigation environment in front (about
180 degrees in semi circular range). Fuzzy regions in
front of the robot are defined according to the visuali-
zation capability of the sensors. Each object detected has
a distance variable from the Robot. This range data has
a different membership in each of the 7 range subsets
defined as Very very far (VVFAR), Very far (VFAR), Far
(FAR), Moderate (MOD), Near (NEAR), Very near (VNEAR),
Very very near (VVNEAR). The direction of universe is divi-
ded into 7 subsets. The linguistic variables that describe
the angle heading are Very very left (VVLEFT), Very left
(VLEFT), Left (LEFT), Front (FRONT), Right (RIGHT), Very
right (VRIGHT), Very very right (VVRIGHT). The fuzzy re-
presentation of the environment is shown in Figure 1
with numerical notation for each region. The fuzzy repre-
sentation divides the whole navigation environment into
different regions like VVFAR-VLEFT (61), FAR-RIGHT(44)
and NEAR-FRONT(23) etc.

As the regions defined are fuzzy in nature, there can
be overlaps from one region to another region. For sim-
plicity these overlaps are not shown in the figure. The
range and angle information need to be represented by
a suitable membership function. Many authors have ad-
dressed critical issues relating to the selection and per-

Fig. 1. Division of Navigation Space into Fuzzy subsets of
Range and Direction.
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Fig. 2. Short term motion prediction.

3. Optimization of the Rulebase
by Partitioning the Navigational Space
Many of the rules defined in the system look inconsis-

tent such as
1. IF object at is VFAR,VVLEFT and object at is

FAR,VVLEFT THEN object predicted at is
MOD,VVLEFT.

2. IF object at is VFAR,VVLEFT and object at is
FAR,VVLEFT THEN object predicted at is FAR,VVLEFT.

Where the antecedents are same but the consequents
are different. The reason for the inconsistency is due to
the direction of traversal of the object. Future motion of
the object is dependent on the history of the direction of
the traversal of the object. To overcome this type of in-
consistency, while defining the rule base, partitioning of
the navigational space is done. Considering the naviga-
tional space that is tessellated in eight geographical

t t
t

t t
t

1 2
3

1 2
3

Fig. 3. Division of navigational space into Directional Space.

formance of fuzzy membership functions for various real-
time robot control applications [6], [8], [14]. In most of
the cases triangular membership function has proved
superior over other membership functions like trapezo-
idal, Gaussian, bell shaped, polynomial-PI and sigmoidal.
For our application as the prediction needs to be more
accurate and the strength of the rule/ rules fired can ma-
ke remarkable difference in the prediction, selection of
triangular membership function for representing angle
and range values is inevitable. The selection of 07 fuzzy
subsets for range and angle is moderate as selecting 05
categories will have less number of fuzzy rules but, qua-
lity of prediction may reduce if navigation space is large,
selecting 09 or more number of categories will increase
the number of fuzzy rules as well as the complexity of the
system which could reduce the response time of the pre-
dictor. Both range and angle subsets are normalized
between 0-1.

In the rule base formation phase, rules are defined
and added to the rule base using real-life data consisting
of human motion patterns with velocity in the range 2-10
kmph. At time , the position (angle and range) of the
moving object from the robot is read. Using fuzzification
the observed data is converted to fuzzy value. At time

and , where is threshold time
difference greater than or equal to 1 sec the sensor reads
the position of the same object. The reason for conside-
ring 1 sec is that, the time needed to process the
captured image to identify the objects of interest by the
vision system needs at least 01 sec or more as per the cur-
rent literature. The maximum value of the considered
was 04 seconds. This is because, as the time gap between
the measurements increases the quality of the prediction
reduces as well as the prediction looses its significance.
The read value of the object position is converted to fuzzy
value. The same process is followed at time
and to get the fuzzy value of the location
of the same object under observation. A fuzzy rule with
the positions of the moving object at time and as
the antecedent and the position of the object at time
as the consequent is formed and added to the rule-base.
Each rule in the rule-base is represented as

and THEN

where and represent the range and the angle res-
pectively of the object at time , and represent
the range and the angle respectively of the object at time

, and and represent the range and the angle
respectively of the object at time . Similar rules are ad-
ded to the rule-base for different objects observed at
various positions in the navigation environment.

In the implementation phase of the predictor, the ro-
bot observes the moving object at time and and
sends the data to the fuzzy predictor algorithm. With the
application of fuzzy inference process, prediction of the
next instance position of the moving object is carried
out. The complete process of short term motion predic-
tion is represented in Figure 2.
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directions, the sensor readings of the object positions ta-
ken at previous two time intervals forms a trajectory in
one of these directions.

A separate directional space is created for each direc-
tion (Figure 3) and rules are clustered based on the direc-
tion of traversal object. Depending on the direction of
traversal of the object, only those rules which belong to
that directional space will be selected for processing.

The proposed fuzzy predictor algorithm has to process
all the rules in a sequential form. The time complexity of
the algorithm is linear and is of the order . This is
reduced by reordering the rules in the form of a decision
tree. Each group of rules in the directional space is reor-
ganized and IF-ELSE statements are written in the form of
a decision tree. The decision tree is a classifier in the
form of a tree structure, where each node is either a leaf
node - indicates the value of the target attribute (class)
of examples or a decision node specifies some test to be
carried out on a single attribute-value, with one branch
and sub-tree for each possible outcome of the test.

Considering the basic organization of the fuzzy rule-
base (which is a sequential set of rules) for two rules

Rule1: IF and
IF THEN

Rule2: IF and
IF THEN

We can have rules
i) starting with and and with any

values from 0-6
ii) starting with and and and

with any values from 0-6
iii) starting with and with

any values from 0-6
iv) starting with and with

any values from 0-6

These set of rules when organized in sequential order
form a huge number of rules and consequently increasing
the size of the rule base for processing. Using decision
tree approach the two rules defined previously can be
reorganized as follows.

{SW(d1),S(d2),SE(d3),E(d4),NE(d5),N(d6),
NW(d7),W(d8)}

( )

((R1==2 , 1 == 2))
((R2==1, 2 == 1)) R3, 3 = 21;
((R1==2, 1 == 2))
((R2==1, 2 == 2)) R3, 3 = 22;

R1=2 1, R2, 2

R1=2 1 = 2 R2 2

R1=2, 1 = 2, R2=1 2

R1=2, 1 = 2, R2=1, 2

1) if(R1==2)
2) {
3) if( 1 == 2)
4) {
5) if(R2==1)
6) {
7) if( 2 == 1)
8) {R3, 3 = 21;}
9) if( 2 == 2)
10) {R3, 3 = 22; }
11) }
12) }
13) }

4. Rulebase Optimization using Decision
tree Approach
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In the above expression if , no expression with-
in the if block of is executed. Similarly all the rules in
the fuzzy rulebase can be reorganized in the form of a de-
cision tree. For the developed rule-base, Figure 4 gives
the partial representation of the decision tree for IF-ELSE
statements. The input read by the fuzzy predictor algo-
rithm classifies the input set to one of the directional
spaces (1 to 8) defined in Section 3. Each internal node
is labeled with an integer 1 to 8 indicating the direction
of traversal of the moving object and one of the direc-
tions will be selected based on the history of object mo-
tion. Each level in the decision tree corresponds to a fuz-
zy set indicating either the range or direction subsets
( ). Each item in the fuzzy antecedent is pro-
cessed as and when it receives inputs at each level in the
decision tree and each input is a partial information of
the position of the object in the navigational environ-
ment. Each interior node in the decision tree corresponds
to a variable; an arc to a child represents a possible value
of that variable. A leaf represents a possible value of tar-
get variable given the values of the variables represented
by the path from the root. Based on the input one of the
outgoing edges will be selected. The outgoing thick edge
represents the selected fuzzy subset and remaining dot-
ted edges represent the other unselected nodes.

To execute the algorithm, the process starts at the
root node , follows the edge labeled , and con-
tinues recursively. Thus, the execution of the algorithm
gives a path from the root to some leaf. Each leaf has an
integer label; when the execution reaches a leaf, its label
is returned as the algorithm's output.

Let be the length of the root-to-leaf path in
decision tree traversed when the input is (rule). The
complexity of any decision tree algorithm is its
depth and the complexity of the problem is the depth
of the shallowest decision tree. For the prediction algo-
rithm, the time complexity of the decision tree represen-
tation of the rule-base system is given by

(2)
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Fig. 4. Optimization of Fuzzy rule-base using Decision tree.
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where is the depth of the tree.

Table 1 represents the selection of the nodes of the
decision tree at various levels.

The rule-base implementation comprises of the obser-
vation of the moving objects in the navigational environ-
ment at equal time intervals and prediction of their futu-
re position using the Fuzzy rule-base. This step involves
the fuzzy inference process. The Fuzzy inference process
comprises five parts: fuzzification of the input data, ap-
plication of the fuzzy operator (AND or OR) in the antece-
dent, implication from the antecedent to the conse-
quent, aggregation of the consequents across the rules
and defuzzification. The fuzzy inference process adopted
the Mamdani model. The Mamdani model uses rules
whose consequent part is a fuzzy set.

if is and is and is
then is (3)

where is the number of fuzzy rules,
are the input variables, is the output vari-

able and and are fuzzy sets characterized by mem-
bership functions and , respectively.

Given the inputs of the form

is is is

where are Fuzzy subsets of .
The contribution of rule to Mamdani model's output is
a Fuzzy set whose fuzzy membership function is compu-
ted by

(4)

where ^ denotes the 'min' operator. The final output of
the model is the aggregation of outputs from all the rules
using the max operator.

n
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Table 1. Decision Tree Analysis for Short Term Motion
Prediction.

5. Fuzzy Rule-base Implementation
for Motion Prediction
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Defuzzification of the final output is done to get the
crisp value. Three most commonly used defuzzification
techniques are considered: i) Fuzzy OR method/Min-Max,
ii) Center Of Area (COA) and iii) Mean Of Maximum (MOM)
methods. These methods operate on range and angle
output subsets separately to generate the final crisp
value, indicating the range and angle of the final output.

Table 2 represents the evolution of the Fuzzy predic-
tor algorithm. The table is parameterized by the stage
of the algorithm development, the number of rules to be
processed and the time complexity. The unoptimized
fuzzy predictor consists of all the rules identified during
the formation of the rule-base. As the rule-base is large
and consists of inconsistent rules, its response time and
relative error is high. All the rules are processed in a line-
ar order, the time complexity of the predictor is
where is the number of rules. The directional space
approach clusters the rules in different directions which
reduces inconsistency, as well as response time. The de-
cision tree approach reorganizes the rule-base and redu-
ces the response time and time complexity of the predic-
tor to where is the number of rules processed
by the predictor algorithm. The fuzzy predictor algorithm
is developed in C++ language.

The algorithm is tested on 1.66 GHz machine in VC++
environment. The tests are carried out for real-life bench-
marked datasets[3], [11], [13]. These data sets are gat-
hered through i) INRIA Labs with data captured at INRIA
Labs at Grenoble, France (A wide angle camera lens in the
entrance lobby of the INRIA Labs at Grenoble, France. The
resolution is half-resolution PAL standard); ii) Motion
Capture Web group of Univ. of S. California (Consisting of
Human Motion Patterns); iii) CMU Graphics Lab dataset.
(Vicon motion capture system consisting of MX-40 came-
ras with images of 4 megapixel resolution).

The data sets consist of different human motion pat-
terns. These include people walking alone, running, me-
eting with others, window shopping, entering and exi-
ting shops (average speed in the range 2-10 kmph). The
position of the moving objects within the navigational

μ ( ) = {μ '1 ( ), μ '2 ( ),….. μ ' ( )}
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6. Experimental Results

Table 2. Evolution of Short term predictor.
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Level
0
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Nodes
DS={1,2,3,4,5,6,7,8}
IF (R1 and 1)
and (R2 and 2)
R1={0,1,2,3,4,5,6}

1={0,1,2,3,4,5,6}

R2={0,1,2,3,4,5,6}

2={0,1,2,3,4,5,6}

R3={0,1,2,3,4,5,6}
and
3={0,1,2,3,4,5,6}
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Type
Directional Space
Rule Antecedent

Fuzzy Object distance
at time t1
Fuzzy Object angle
at time t1
Fuzzy Object distance
at time t2
Fuzzy Object angle
at time t2
Rule Consequent:
Predicted Fuzzy
Region at time t3

Development Stage

Basic Unoptimizeed
Fuzzy predictor

Predictor with
Directional Space
Approach

Predictor with
Decision Tree
Approach

Number of Rules
to be processed
in the Worst case
1200

140 (Approx)

43(Approx)

Average Time
Complexity

O n n

O n' n'

n'< n
O log n'

( )

( )

( )

where
is the number
of Fuzzy Rules

where
is the number
of Fuzzy Rules
and
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environment at any instant of time is given separately as
a database so that any prediction algorithm can be tested
and analyzed for any number of objects. These motions
exhibit intentional motion and predicting the next ins-
tance position of objects in such scenario is an important
task as it can find applications in keeping track of human
motion patterns in hospitals, shopping complex and in
exhibition halls etc.

Figure 5 represent the movement of the objects from
left to right direction and the corresponding short term
motion prediction path. and represent the predic-
ted and the actual path traversed by the moving object.

and represent the predicted goal and the
actual goal of the object. is the actual path observed
and is the actual goal reached by the object .

We define the Relative Error (RE) for sample test
data (sum of the number of predicted positions for a spe-
cific object in motion) as

(6)

Where da is the actual position, is the predicted
position of the moving object in the navigational envi-
ronment.

The average relative error is calculated for various test
cases using Min Max, MOM and COA defuzzification tech-
niques. For each test case the average response time is
also calculated to find its suitability to real-life environ-
ment. For measuring the performance of the system the
standard parameters like prediction steps and relative
error are used. The prediction algorithm is tested with
prediction steps 02 seconds (Fig. 6), 03 seconds (Fig. 7),
04 seconds (Fig. 8).

Table 3 represents the results of the Short term pre-
dictor at various stages of development. Each stage in
the evolution of the fuzzy predictor is parameterized by
the relative error and average response time. These pre-
diction steps indicate the in between time gap for each
successive measurement (of the object position) by the
vision system.

Variations in the velocity and directions of motion of
the moving objects in these test cases are the sources of
uncertainty in predicting the next instance position of
the moving object. Tests are carried out to measure the
relative error between the actual and predicted positions
when minute variations in velocity and directions of the
moving objects are observed (Fig. 9).

The proposed predictor generates the next instance

Pi Ai

Pi G Ai G
A

A G A

M

dp

( ) ( )
1

1( ) 1

Fig. 5. Prediction graphs showing few of the path predic-
tion solutions for Short term motion prediction.

position as a fuzzy region than as a (x,y) coordinate. This
helps in the robot to classify the predicted region as a
danger zone or the region of interest.

Defuzzification of the output generates the predicted
coordinate position of the moving object. The response
time of the algorithm with Min Max defuzzification varied
in the band from 1.45 milliseconds to 2.9 milliseconds
and the relative error in the band from 0.04 to 0.4.

The response time of the algorithm with COA defuz-
zification varied in the band from 3 milliseconds to 7 mil-
liseconds and the relative error in the band from 0.01 to
0.1. The response time of the algorithm with MOM defuz-
zification varied in the band from 1.95 milliseconds to
3.37 milliseconds and the relative error in the band from
0.04 to 0.1. From the graphs it is observed that the pre-
dictor with MOM defuzzification performs better in terms
of response time with less relative error.

Fig. 6. Average response time and relative error of the Short
term predictor at prediction step: 02 seconds.

Fig. 7. Average response time and relative error of the Short
term predictor at prediction step: 03 seconds.
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Table 3. Results of Short term predictor at various stages of
development.

Fig. 8. Average response time and relative error of the Short
term predictor at prediction step: 04 seconds.

Fig. 9. Relative Error when measured with variations in
velocity and direction of motion of moving objects.

Table 4. Comparison of Short term predictors.

A few of the well known motion prediction techniques
are re-implemented and are compared with the developed
fuzzy predictor in respect of response time and relative
error (Table 4). From the table it can be observed that the
performance of the predictor is comparable with regard
to relative error but better than the other prediction
methods as far as response time is concerned.

In a dynamic navigation system the robot has to
avoid stationary and moving objects to reach the final
destination. Short term motion prediction for moving
objects in such an environment is a challenging problem.
This paper proposes a simplified approach for predicting
the future position of a moving object (human motion
patterns) using fuzzy inference rules derived from experts
knowledge and real-life data. The rule-base has been
optimized by directional space approach and decision
tree approach. Fuzzy based prediction is more flexible,
can have more real life parameters, comparable to the
existing approaches and suited for real-life situations.
The results of the study indicate that, the fuzzy predictor
algorithm gives comparable accuracy with quick response
time when compared to existing techniques.
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