
Abstract:

1. Introduction
In positive systems inputs, state variables and out-

puts take only non-negative values. Examples of positive
systems are industrial processes involving chemical reac-
tors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric
pollution models. A variety of models having positive li-
near behaviour can be found in engineering, manage-
ment science, economics, social sciences, biology and
medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive sys-
tems is more complicated and less advanced. An overview
of state of the art in positive systems theory is given in
the monographs [3], [4]. The realization problem for
positive discrete-time and continuous-time without and
with delays was considered in [1], [4-9], [15] and for po-
sitive fractional linear systems in [13]. The reachability,
controllability and minimum energy control of positive
linear systems with delays have been considered in [2].
A new class of positive 2D hybrid linear systems described
by two vector equations has been introduced in [10] and
of fractional positive hybrid systems in [11]. The reali-
zation problem for positive linear hybrid systems has
been investigated in [12], [16], [17]. Structural decom-
position of transfer matrix of positive normal hybrid
systems has been proposed in [14].

In this paper a method for computation of positive
realizations of linear hybrid system described by the ge-
neral model will be proposed.

The paper is organized as follows. In section 2 funda-
mentals of positive hybrid linear systems are recalled and
the realization problem is formulated. The main result is
presented in section 3. In subsection 3.1 the proposed
state variable diagram method is presented for single-
input single-output (SISO) linear hybrid systems. An
extension of the method for multi-input multi-output
(MIMO) systems is presented in subsection 3.2.

The realization problem for linear hybrid systems des-
cribed by the general model is formulated and solved. Suf-
ficient conditions for the existence of positive realizations
are established. A procedure based on the state variable
diagram method for computation of a positive realization
of a given transfer matrix is proposed. Effectiveness of the
procedure is demonstrated on two examples.

Keywords: positive realization, hybrid, general model,
state variable diagram.

Concluding remarks are given in section 4.
In the paper the following notation will be used. The

set of real matrices will be denoted by
. The set of real matrices with nonnegative

entries will be denoted by and . The
identity matrix will be denoted by and the

transpose will be denoted by .

Consider a hybrid linear system described by the
equations [4]

(1a)

where

are the state, input and output vectors and

Boundary conditions for (1a) have the form

(2)

The hybrid system (1) is called internally
positive if and
for arbitrary boundary conditions

and any inputs

The transfer matrix of the hybrid system (1) is
given by

where is the set of real matrices in and
with real coefficient.

[4] The hybrid system (1) is internally
positive if and only if
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2. Preliminaries and the problem formulation
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Definition 1.

Theorem 1.
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(6)

(7)

(8)

(9)

First we shall solve the problem for SISO hybrid sys-
tems using the state variable diagram method [16].

Let a given transfer function of the SISO hybrid system
have the form

where is the set of Metzler matrices (with
nonnegative off-diagonal entries).

From (5) we have

since .

Knowing the matrix we can find the strictly positive
transfer matrix

The matrices (1c) satisfying the conditions
(6), (7) and (5) are called the positive realization of the
transfer matrix .

The problem under considerations can be stated as
follows.

Given a rational matrix . Find its
positive realization, i.e. a realization (1c) satisfying the
conditions (6) and (7).

In this paper sufficient conditions for the existence
of a positive realization will be established and a proce-
dure for computation of a positive realization for a given
transfer matrix will be proposed.
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3. Problem solution

3.1. SISO systems

(10)

which by definition is the ratio of and for
zero boundary conditions, where ,

and and are the zet and Lap-
lace operators.

Using (8) and (9) we can find

(11)

and the strictly proper transfer function

(12)

where
.

Multiplying the numerator and denominator of (12) by
we obtain

(13)

Defining

Y s,z U s,z( ) ( )
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Fig. 1. State variable diagram for transfer function (13).



(14)

From (14) and (13) we have

(15)

and

(16)

Using (15) and (16) we may draw the state variable diagram shown in Fig. 1.
The number of integration elements is equal to and the number of delay elements is equal to . The outputs of

the integration elements are chosen as the state variables and the outputs of the delay elements as the
state variables . Using the state variable diagram we may write the
equations

(17a)

(17b)

(17c)

where

(17d)

Substituting in the equations (17a) by and differentiating with respect to the equations (17b) we obtain the
equations (1) with

(18a)

where

1/ 1/ 2
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(18b)

There exists a positive realization (18) of the transfer function (10) if the following conditions are satisfied

1)
2)

If the condition 2) is met then and the coefficients of the strictly proper transfer function (12) are
nonnegative. From (18) it follows that if the conditions 1) and 2) are satisfied then

and by Theorem 1 the realization (18) is positive.
From (18) we have the following corollary.

If the conditions 1) and 2) of Theorem 2 are satisfied then there exists a positive realization of the transfer
function (10) with and and .

Find a positive realization of the transfer function

(19)

Using (8) and (9) we obtain

(20)

and the strictly proper transfer function

(21)

In this case (15) and (16) have the form

(22)

and

(23)

Theorem 2.

Proof.

Corollary 1.

Example 1.

�

A B0 0= 0 = 0
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Using (22) and (23) we may draw the state variable diagram shown in Fig. 2.

The outputs of the integration elements are chosen as the state variables and the outputs of the delays
elements as the state variables . From the state variable diagram we have the equations

(24)

and

(25)

The equations (24) and (25) can be written in the form (1), where

(26)

The desired positive realization of (19) is given by (20) and (26).

First we shall consider linear hybrid -inputs and one-output systems with the transfer matrix

(27)

where

(28)

Fig. 2. State variable diagram for transfer function (21).

x s,z x s,z
x s,z x s,z
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3.2. MIMO systems
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It is assumed that the minimal common denominator
satisfies the assumption

(29)

Using (8) and (9) we can find the matrix and the
strictly proper transfer matrix . Applying the ap-
proach presented above for SISO systems to MIMO system
with (27) we may find a realization of each transfer func-
tion (28). A realization of the transfer function (27) can
be found by the use of the following theorem.

Let

(30)

be a realization of the transfer function (28). Then a
realization of the strictly proper transfer matrix

(31)

is given by

(32)

Using (8), (31) and (32) we obtain

d s,z

D
T s,z

( )

( )sp

Theorem 3.

Proof.

�

Theorem 4.

Proof.

Example 2.

There exists a positive realization (32) of the
transfer matrix (27) if all coefficients of the numerator

are nonnegative and all coefficient of
the denominators are nonpositive
except the leading coefficient equal to 1.

If the assumptions are satisfied then by Theorem 2
the realization (30) of the transfer function (27) is a posi-
tive one. From (32) it follows that in this case all matrices
(32) have nonnegative entries and by Theorem 1 the reali-
zation of the transfer matrix is positive.

Given the transfer matrix

(33)

where is given by (19) and

(34)

Using (8) and (9) from (33), (19) and (34) we have

(35)

and

(36)

The state variable diagram corresponding to the
transfer function is shown in Fig. 2.
and the positive realization is given by (26) i.e.
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Fig. 3. State variable diagram for transfer function (36).
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(37)

The state variable diagram corresponding to
is shown in Fig. 3.

Using this state variable diagram we can write the
equations

(38)

From those equations we have the realization of
in the form

(39)

The state variable diagram corresponding to the tran-
sfer matrix (36) can be obtained as the connection of the
state variable diagrams shown in Fig. 2 and Fig. 3 (see
Fig. 4).

T s,z

T s,z

sp

sp

2

2

( )

( )

Fig. 4. Connection of state variable diagrams.

By Theorem 3 the desired realization of the transfer
matrix (33) is given by

(40)

where the submatrices are given by
(37) and submatrices are given by
(39). The realization is positive since all entries of the
matrices (40) are nonnegative.

If the assumption (29) is not satisfied and

and

(41)

then to decrease the dimension of a realization of (27)
it is recommended to find and write the transfer
matrix (27) in the form

(42)

where denotes the degree of the
minimal common denominator with respect to .

Note that the -inputs and -outputs systems can be
considered as the sequence of -inputs and one-output
systems. In this way the presented approach can be ex-
tended for -inputs and -outputs linear systems.

The problem of computation of positive realizations
of hybrid linear systems described by the equations (1) by
the use of the state variable diagram method has been
addressed. It has been shown that there exists a positive
realization of a given transfer matrix if all coefficients of
the numerator of each transfer function are nonnegative
and all coefficients of the denominator are nonpositive
except the leading one equal to 1. The presented method
enable us to find a positive realization with zero ,
matrices. If the condition (41) is satisfied then it is re-
commended to find first minimal common denominator
for each row of the transfer matrix. Those considerations
can be extended to linear hybrid systems with delays and
to linear fractional hybrid systems.
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