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Abstract:

The realization problem for linear hybrid systems des-
cribed by the general model is formulated and solved. Suf-
ficient conditions for the existence of positive realizations
are established. A procedure based on the state variable
diagram method for computation of a positive realization
of a given transfer matrix is proposed. Effectiveness of the
procedure is demonstrated on two examples.

Keywords: positive realization, hybrid, general model,
state variable diagram.

1. Introduction

In positive systems inputs, state variables and out-
puts take only non-negative values. Examples of positive
systems are industrial processes involving chemical reac-
tors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric
pollution models. A variety of models having positive li-
near behaviour can be found in engineering, manage-
ment science, economics, social sciences, biology and
medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive sys-
tems is more complicated and less advanced. An overview
of state of the art in positive systems theory is given in
the monographs [3], [4]. The realization problem for
positive discrete-time and continuous-time without and
with delays was considered in [1], [4-9], [15] and for po-
sitive fractional linear systems in [13]. The reachability,
controllability and minimum energy control of positive
linear systems with delays have been considered in [2].
A new class of positive 2D hybrid linear systems described
by two vector equations has been introduced in [10] and
of fractional positive hybrid systems in [11]. The reali-
zation problem for positive linear hybrid systems has
been investigated in [12], [16], [17]. Structural decom-
position of transfer matrix of positive normal hybrid
systems has been proposed in [14].

In this paper a method for computation of positive
realizations of linear hybrid system described by the ge-
neral model will be proposed.

The paper is organized as follows. In section 2 funda-
mentals of positive hybrid linear systems are recalled and
the realization problem is formulated. The main result is
presented in section 3. In subsection 3.1 the proposed
state variable diagram method is presented for single-
input single-output (SISO) linear hybrid systems. An
extension of the method for multi-input multi-output
(MIMOQ) systems is presented in subsection 3.2.

Concluding remarks are given in section 4.

In the paper the following notation will be used. The
set of nxm real matrices will be denoted by R and
R"=R"!, The set of nxm real matrices with nonnegative
entries will be denoted by and R and Ri=R?". The
nxv identity matrix will be denoted by I, and the
transpose will be denoted by 7.

2. Preliminaries and the problem formulation
Consider a hybrid linear system described by the
equations [4]
X(t,i+1) = Apx(t,0) + Ax(t,0) + Ayx(t,i +1) + (1)
+ Byu(t,i) + Bu(t,i) + Bu(t,i +1)

W(t,i)=Cx(t, i)+ Du(t,i), t e R, =[0,40],

(1b)
ieZ, 7, ={12..}
where X(t,i)=%, x(t,i)eR", u(t,i)eR”,

y(t,i) € R’ are the state, input and output vectors and

A, eR™", B, eR™™, k=0,1,2; CeR”,DeR™.
(1)

Boundary conditions for (1a) have the form
x,(0,7), ieZ, and x(z,0),x(¢,0), teN, (2)
Definition 1. The hybrid system (1) is called internally

positive if x(z,i) € R} and y(t,i)) e R?, teNR ,ieZ,
for arbitrary boundary conditions

+9

x(0,))eR},ieZ, , xt,0)eR], x(0)eR], teR,
(3)

and any inputs

u(t,i)e Ry, u(t,i)e R, teR, ,ieZ,. (4)

The transfer matrix 7(s,z) of the hybrid system (1) is
given by

T(s,2)=Cll sz~ 4, — As— 4,z (B, + Bs + B,z) +
+D e R (s,2) (5)

where R”"(s,2) is the set of pxm real matrices ins and z
with real coefficient.

Theorem 1. [4] The hybrid system (1) is internally
positive if and only if
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A, eM, (6)

Ay A €N, A+ A A, eR™", B, B, B, e R"",

+ +

CeR”, DeR"™" (7)

where M, is the set of nxn Metzler matrices (with
nonnegative off-diagonal entries).
From (5) we have

D= lim T(s,z) (8)

8,20

since lim [/ sz — A, — A s — A,z] "' =0.

Knowing the matrix D we can find the strictly positive
transfer matrix
T,(s,2)=T(s,z)=D 9)
Definition 2. The matrices (1c) satisfying the conditions
(6), (7) and (5) are called the positive realization of the
transfer matrix .

The problem under considerations can be stated as
follows.

Given a rational matrix 77(s,z)e R”"(s,z). Find its
positive realization, i.e. a realization (1c) satisfying the
conditions (6) and (7).

In this paper sufficient conditions for the existence
of a positive realization will be established and a proce-
dure for computation of a positive realization for a given
transfer matrix 7(s,z) will be proposed.

3. Problem solution

3.1, SISO systems

First we shall solve the problem for SISO hybrid sys-
tems using the state variable diagram method [16].

Let a given transfer function of the SISO hybrid system
have the form

n(s,z) b, ,s"z" +b ShzB T+

91,92

T(S’Z): d h 59 __ q 41 _
(s,2) stz A, 418"z

+ b5z +b,ys + b,z + b,

e R (s,z) (10)
—apSz —a, S —ayz—da,,
which by definition is the ratio of Y(s,z) and U(s,z) for
zero boundary conditions, where, U (s, z) = Z{L[u(t,i)]},
Y(s,2)= Z{L[y(t,i)]}and Z and L are the zet and Lap-
lace operators.
Using (8) and (9) we can find

D= lim T(s,2)=b, . (11)

§,2—0

and the strictly proper transfer function
b stz 4p 71sqlz‘“’l+...+

T (S Z)Z 91,92 9192
sp AT I 9 _ [
S Z aqlﬁqz_l z
+b,,5z2+b,ys+by,z + by, (12)

- 91,92
—apsz—a, S —ayz—day

b 9 4271 b b b b
by 418" 2" .t by sz + Dy + by iz + by,

= 4 5492 __ 9 qz_l_ _ _ _ —
s"z® —a, sz e — A SZ = Q1S — Ao Z — Ay

where b, =b,+b, a,, k=0,1,...q; [=0,1,..,
g2 (k+1# ¢, +g,).

Multiplying the numerator and denominator of (12) by

s~"z™" we obtain
7 -1 7. =g 1-¢
T CY(s,2) | by .z Hetbys T2+
I I T e e S
(s,2) l-a, , . z7 —..—ays "z " -
b ¢ N,
et bys iz (13)

_ _ 41 5~
T AgS T Z

Defining

Fig. 1. State variable diagram for transfer function (13).
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[
U,
E(s.2)= e - (14)
—a, 7 —e—ays "zt ——ays Tz
From (14) and (13) we have
E(s,z)= U(s,z)—k(aql,(h_lz’l Fota, s T2 bt ags "z ?)E(s, 2) (15)
and
Y(5,2)=(b, , 12+t bys 02 L bys T2 )E(s, ) (16)

Using (15) and (16) we may draw the state variable diagram shown in Fig. 1.

The number of integration elements 1/s is equal to ¢, and the number of delay elements 1/z is equal to 2g,. The outputs of
the integration elements are chosen as the state variables x; (z, i),...,xq] (¢,i) and the outputs of the delay elements as the
state Yan‘ables Xy (ED)ses Xy (0,0), X, 1y 1 (£50)es X, (t,i). Using the state variable diagram we may write the
equations

q1+2q,

Xl(tni) =X2(t,i)
xz(tni) =x3(lai)

X, (6,0 =x, (4,0)
x, (D) =a,, x (L) +a,, x,(6,0)+..+a, , x, (6,0)+x, (1) +u(t,i) (17a)

x, (it =a,, x (D) +a, x,@¢0+.+a, , x, (GD)+a, X, (GD+x, @D +a,  u(l,D)

Xy iqaGit ) =ag, x, (4,0 +a, x, (6,0 +..+a, ,,x, (6,)+a, x, (6D +x, ., (6)+a, u(l,i)
Xyiq, (I =0 0%, (1,0) + @y X, (8,0) + .+ a, X, (G0 +a, ox, (D) +a, (D)
Xy rart (L) =80 o, (8,0) + 8, %, (E,0) + 48, ox, (6,0 + b, oX, o (1,0)+B, qu(t,i)

Xy vqya I+ 1) = 80, (,0) + 8y, X, (1,0) + 8,y yx, (D) +D, x, (D +x, (6D +b, u(,D)

X, g, (LA =0 3, (6D F 0y, X, (6D ey %, (L) 4D, X, (D)X, (D), u(t,i) (17b)

y(t,i)= bo,qle i)+ blqux2 (t,i)+...+ bqu,qzqu (t,i)+ Xy 120, (t,0) (17¢)
where
ay, =a,+a,a,

ay =by + bq,laqu

k=0l,..,9,-1 [1=0,1,.,q,-1 (17d)

Substituting in the equations (17a) i by i+1 and differentiating with respect to ¢ the equations (17b) we obtain the
equations (1) with

0o 0 0 AP 4D 0
Ao =0, Al — Az(ll) ASz) 0 le m(qlﬂqz)x(qﬁ%z), A2 =1 0 0 0le iR(qﬁ-ZtIz)X(qﬁZqz),
4y 4y 4y 0 0 0
0 B,
B, = 0, B =|B, |e m(%”fh)xl, B, = 0 |le ER(ql+2q2)XI’ C= [C1 0 C3] e RH@+24)
| B, 0 (18a)

where
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[
—a - 7] I 91,921 10 0
0,4,-1 Lg,-1 fi—L.g,-1
. . . 91,422 0 1 0
A2(11) = B B A Aé;) — . o e R
ay Ay e Ay
_ _ _ a; 00 1
a a a
0,0 1,0 ¢-1,0 a , 0 0 0
L 91>
S o byo 0 0 . 0
o0 o a, 1o e
. . ! b,, 00 0
o 610,1 au aql 11 dr<dy m . . . . 24254
A5 = . . . eRT, 4, = S D e R,
. . . byya 00 0
0.4, Lg,-1 ¢1-1,g>-1 7
bq1 0 00 0_
[0 0 0 0] 0 1 0 0
00 .. 0
10 0 0 0 1 0 .
2 : : 2 P
AF =10 1 0 0|eR™, 47 = . Do eRih, 4D = e R,
o : 0 0 0 1
_0 0 1 O_ _ao’qz Lg, az’qz a‘!l -Lg, i
4,921 qu,O 0
4x1 bql 1 g%l : g;x1
B, = eR™, By=| U |eR"T, B, =| |eR",
q;.1 O
aqlvo q1:q>-1 1
L W lxq _ Ixg
[by,, by - by, 1R, C=[0 0 1]eR™ (18b)

Theorem 2. There exists a positive realization (18) of the transfer function (10) if the following conditions are satisfied

1) a,=20 for k=0]1,..
2) b,>0 for k=0,1,..

[=0,,...
0,1,.

.G, k+1#q +q,
s,

NI
,qy; 1=

Proof. If the condition 2) is met then D=5,

nonnegative. From (18) it follows that if the ‘conditions 1) and 2) are satisfied then A4, € R,
k=10,1,2; D >0 and by Theorem 1 the realization (18) is positive. O

From (18) we have the following corollary.

>0 and the coefficients of the strictly proper transfer function (12) are

iRnxm , Ce S:RPX"

Corollary 1. If the conditions 1) and 2) of Theorem 2 are satisfied then there exists a positive realization of the transfer

function (10) with4,=0and By=0and 4, € R}™.

Example 1. Find a positive realization of the transfer function

sP2h stz 5t 4204z 42
2 2
N

T(s,z) =

—2s*z—s*—z*=2z-1

Using (8) and (9) we obtain

D= lim T(s,z) =1

and the strictly proper transfer function

3522425 4227 +32+3

3z 4227+ 25743572 4357

T,(s,2)=T(s,z)—1= =

2 2 2 2
—25°z—s"—z"—-2z—-1

In this case (15) and (16) have the form
E(s,2)=U(s,2)+ 2z +z 72 +s 2+ 2572z +5 22 2)E(s, 2)
and

Y(s,z)=(z"' + 22704257 435727+ 3s72272)E(s, )
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Using (22) and (23) we may draw the state variable diagram shown in Fig. 2.

Fig. 2. State variable diagram for transfer function (21).

The outputs of the integration elements are chosen as the state variables x,(s,z), x,(5,z) and the outputs of the delays
elements as the state variables x;(s,z),...,X,(5,2). From the state variable diagram we have the equations

X, (t,i+1)=x,(t,i+1)

X, i+ ) =x,(t,i+)+x,(t,i+ D +u(t,i+1)

X (1) =4%,(1,0) +2X,(¢,1) + X, (¢,0) + 2u(t,7)
X, (8,1 +1) =2x,(¢,0) + X, (¢,1) +u(t, i)

X5(t,i+1) =5x,(2,1) + 2%, (¢,0) + 2ui(t,7)

Xo(t,i4+1) =6x,(t,0) +3x,(¢,0) + x(¢,0) + 3u(z,i) (24)
and
v(t,0) =2x,(t,0) + x,(,0) (25)

The equations (24) and (25) can be written in the form (1), where

x(t,i):[xl(t,i) xz(t:i) x3(t:i) x4(l,i) xs(tai) xs(tai)]T
A,=0, B,=0, C=[2 0 0 0 0 1]

0 00O0O0OO 01 00 00O 0 0
00 0O0O0OO 1 01 000 0 1
402100 000 0O0O 2 0
Al = > A2 = 5 Bl = N BZ =
201000 000 O0O0O 1 0
502000 000 0O0O0 2 0
6 03010 000 0O0O 3 0
- - - - ol - - (26)
The desired positive realization of (19) is given by (20) and (26).
3.2. MIMO systems
First we shall consider linear hybrid m-inputs and one-output systems with the transfer matrix
T(s,2)=[T,(s,2) .. T,(s,2)] €R""(s,2) (27)
where
T LA CIE) R (28)
d,(s,2)
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Fig. 3. State variable diagram for transfer function (36).

It is assumed that the minimal common denominator
d(s,z) satisfies the assumption

d(s,z) =ﬁdk(s,z) (29)

Using (8) and (9) we can find the matrix D and the
strictly proper transfer matrix 7 (s,z). Applying the ap-
proach presented above for SISO systems to MIMO system
with (27) we may find a realization of each transfer func-
tion (28). A realization of the transfer function (27) can
be found by the use of the following theorem.

Theorem 3. Let
A, =0,4,,4,,,B, =0,B,,B,,,C, k=1,....m (30)

be a realization of the transfer function (28). Then a
realization of the strictly proper transfer matrix

TSP(S,Z)ZT(S,Z)—DZ[]](S,Z)—DI

T (s,z)-D,], D,=1lim T,(s,z) (31)
is given by

A, =blockdiag [ 4,, 4,1

A, =blockdiag[ 4,, 4,1,

B, =blockdiag[B,, B,.1,

B, =blockdiag[B,, B, 1,

Proof. Using (8), (31) and (32) we obtain

T,(s,2)=[C, ... C,]{ blockdiag[/,sz — A5 — 4,z]}"
{blockdiag [B,s+B,z .. B, s+ Bzmz]}
=[C, .. C,]{blockdiag[l,sz— As—A,z]"}

{blockdiag[B,;s + B,z .. B,s+B,,z]}
=[c 11,52 45— 4,21 (B, s+ B, 2)

C,[sz—As—A,z]"(B,s+B,,2)]
:[T{(S’Z)_Dl Tm(sﬂz)_Dm] D
Articles

Theorem 4. There exists a positive realization (32) of the
transfer matrix (27) if all coefficients of the numerator
n,(s,z),k = 1,...,m are nonnegative and all coefficient of
the denominators d,(s,z), k = 1,...,m are nonpositive
except the leading coefficient equal to 1.

Proof. If the assumptions are satisfied then by Theorem 2
the realization (30) of the transfer function (27) is a posi-
tive one. From (32) it follows that in this case all matrices
(32) have nonnegative entries and by Theorem 1 the reali-
zation of the transfer matrix is positive. [

Example 2. Given the transfer matrix
I(s,z) =[T\(s2) Ti(s,2)] (33)

where T',(s,z) is given by (19) and
25727 +257 +3z27 +5+1

TZ(Saz): 2 2 2 2

§z°=28"—z"=25z—5-2

Using (8) and (9) from (33), (19) and (34) we have

(34)

D= lim T(s,z)=[1 2] (35)
and

3522425 +22°+32+3

2_2 2 2 2
§z°=28"z—s"—z"=-2z-1

TsP(s,z)=T(s,z)_D{

65> +5z° +4sz+35+5
§?z7 =28 =z 25z —5-2

B {32"1 +2z277 425 2 +3s 2z 43572272
- 2

1-2z"' =z g2 2572z — 5722

6z 2 +5s 2 +4s 'z 4357z 4557222 }
-2 -2 11 12 2 _-2
1-2z7"—s" =25z —s z =25z (36)

The state variable diagram corresponding to the
transfer function 7, ,,(s,z) is shown in Fig. 2.
and the positive realization is given by (26) i.e.
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000 00O
000 O0O0O
4 02100
All_ B
201 0 00
502000
6 03 0 1 0]
0 1 0 0 0 O (0] 0]
1 01 000 0 1
000 O0O0O 2 0
Alz_ ,Bn_’Blz_’
000 00O 1 0
000 O0O0O 2 0
00 00 0 0 13] 0
C,=[2 00 0 0 0] (37)

The state variable diagram corresponding to 7 ,(s,2)
is shown in Fig. 3.

Using this state variable diagram we can write the
equations
X, (t,i+1)=x,(t,i+1)
X, i+ ) =x,(t, i+ )+ x,(t,i+ D) +u,(t,i+1)
X, (8,1 +1) =2x,(¢,0) + x,(,0)
X, (0 4+1) =4x,(¢,0) + X, (2,1) + 2x,(¢,0) + 20, (¢,0)
Xs(t,i+1) =11x,(2,0) +3x,(¢,0) + 6x,(¢,i) + 6u, (¢,1)
X, (t,i4+1) =4x,(2,i)+ X, (2,1)
y(t,1) =5x,(t,0) + x,(t,0) (38)

From those equations we have the realization of
T,,,(s,z) in the form

000000
0 00 0O0 O
020100
L=y 1200 of
11 36 000
(0 400 1 0]
[0 1 0 0 0 O] (0] (0]
1 01000 0 1
A_OOOOOOB_OB:0
2100000 0 |2 2 Jof
000000 6 0
00 000 0] 10 10
C,=[5 0 0 0 0 1] (39)

The state variable diagram corresponding to the tran-
sfer matrix (36) can be obtained as the connection of the
state variable diagrams shown in Fig. 2 and Fig. 3 (see
Fig. 4).

w0

(1,5 —w

Wii)

w(t1)—» Fig.2

W, (t.0)

Fig. 4. Connection of state variable diagrams.

By Theorem 3 the desired realization of the transfer
matrix (33) is given by

4, O 4, 0
A1: ) A2: 5
0 4, 0 4,
g [Bn 0] p_[B 0]
0 B, 0 B,
C=[C, G, D=[1 2] (40)

where the submatrices A,,, 4,,, By;, A5, C, are given by
(37) and submatrices A,,, A,,, By, A, C, are given by
(39). The realization is positive since all entries of the
matrices (40) are nonnegative.

Remark 1. If the assumption (29) is not satisfied and

deg, d(s,z) <] [ deg, d;(s,2)
k=1

and

deg. d(s,z) <] [deg. d, (s,2) (41)
k=1
then to decrease the dimension of a realization of (27)
it is recommended to find d(s,z) and write the transfer
matrix (27) in the form
1

T(S,Z):i[ﬁl(saz) ﬁm(S,Z)] (42)

d(s,z)
where deg, d(s,z) (deg,d(s,z)) denotes the degree of the
minimal common denominator with respect to s(z).

Note that the m-inputs and p-outputs systems can be
considered as the sequence of p m-inputs and one-output
systems. In this way the presented approach can be ex-
tended for m-inputs and p-outputs linear systems.

4. Concluding remarks

The problem of computation of positive realizations
of hybrid linear systems described by the equations (1) by
the use of the state variable diagram method has been
addressed. It has been shown that there exists a positive
realization of a given transfer matrix if all coefficients of
the numerator of each transfer function are nonnegative
and all coefficients of the denominator are nonpositive
except the leading one equal to 1. The presented method
enable us to find a positive realization with zero 4, B,
matrices. If the condition (41) is satisfied then it is re-
commended to find first minimal common denominator
for each row of the transfer matrix. Those considerations
can be extended to linear hybrid systems with delays and
to linear fractional hybrid systems.
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