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Abstract:
In the field of Bioinformatics, the scientific community
is fully aware of the challenges associated with enzyme
classification. In this study, a novel strategy is proposed
based on the use of Anomalous Autoencoders to char‐
acterize chitinases belonging to glycoside hydrolases.
Python and TensorFlow programming technologies were
employed to conduct this analysis. The designed clas‐
sifier consists of two levels that determine both the
enzymatic nature of an amino acid sequence and its
corresponding chitinase enzyme family. These levels con‐
sidered class imbalance and the underrepresentation of
those enzyme families in the CAZy.org database. Fur‐
thermore, a comprehensive comparison was made with
other available software in the field. To represent the
amino acid sequences, embeddings generated from the
ProtFlash model were used. The results obtained in this
study confirm the effectiveness of the proposed imple‐
mentation compared to the methods EzyPred, ECPred,
and Proteinfer.

Keywords: autoencoders, bioinformatics, embeddings,
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1. Introduction
Elucidating protein or enzyme functions from

amino acid sequences is still an open ϐield in Bioin‐
formatics although very outstanding solutions have
been reported in literature including machine and
deep learning approaches [1]. Trying to ϐit this gen‐
eral problem to the recognition of speciϐic enzymes
we detect a lack of data affecting model construction
and validation. Our project involves the exploration
of complete proteomes of microorganisms to identify
potential chitinase enzymes based on the CAZy,org
database, which contains glycoside hydrolases (GH)
enzymes where chitinases are found within the GH18
and GH19 families. The complexity lies in the classi‐
ϐication of sequences that are not very similar to the
annotated (or labeled) ones, due to their low repre‐
sentativeness in several classes, or sequences that are
similar to the annotated ones, but belong to a different
class.

To address this, some methods have been devel‐
oped that leverage various sources of information,
such as different representations of k‐mers [2, 3],
and that “learn” from unlabeled sequences in a semi‐
supervised approach, although the accuracy in classi‐
ϐication remains an open problem [4,5].

Other classiϐication methods rely on embedded
representations that include information from previ‐
ous classiϐications by pretraining themwith databases
of amino acid sequences [6–8]. The embeddings trans‐
form the sequences into numerical vectors through
natural language processing (NLP) while incorporat‐
ing heterogeneous data sources [5].

In addition, non‐standard classiϐication methods
with a semi‐supervised approach or one‐class learn‐
ing [9] have been tackling the low representative‐
ness in the classes. Anomalous Autoencoders can be
considered as a one‐class learning approach because
they are trained using only normal data [10, 11]. By
exposing the model to anomalous data, the resulting
reconstruction is expected to be signiϐicantly different
from the normal data. This discrepancy can serve as a
measure of the anomaly present in the input data [12].

On the other hand, class imbalance is a widely
addressed problem in machine learning and has been
considered in enzyme classiϐication by incorporating
information from labeled sequences into deep neural
network models combined with oversampling meth‐
ods like SMOTE [13].

The proposal of this work is to develop a clas‐
siϐication method using embedded representations
and Anomalous Autoencoders, considering unlabeled
sequences or heterogeneous sources to achieve high
efϐicacy in a study case of chitinases with low rep‐
resentativeness in the family classes, which are also
imbalanced.

2. Content
In the training process of the Autoencoders [14]

in this research, sequence data belonging to the GH18
and GH19 enzyme families were used (Table 1). These
sequences were obtained from the CAZy.org database,
which is recognized for its extensive information on
enzymes related to carbohydrate degradation. All the
training sequences used from the GH18 and GH19
families exhibit the same enzymatic activity with the
EC number 3.2.1.14.
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Table 1. Number of enzymes per family

Family Number of enzymes
GH18 356
GH19 83

To convert the enzyme sequences into numerical
representations, the embedding technique proposed
in the ProtFlash study was employed [15]. This tech‐
nique allowed the generation of feature vectors of
size 768, which capture relevant information from the
sequences and facilitate their further processing in the
context of machine learning workϐlows.

The embedded vectors can exhibit awide variation
in the values they can span, ranging from very distant
ranges, such as ‐255 to 55. To address this diversity
and improve the performance of neural networks,
the Min‐Max scaling technique was applied [16]. As
shown in Table 1, there is an imbalance between
classes of the families under study, and in general, low
representativeness, so preprocessing to increase the
training set could improve classiϐication. Later on, an
experimentation related to this is shown.

Subsequently, these resulting feature vectors were
used as input in the training of the Autoencoders. In
this way, a compact and meaningful representation of
the enzyme sequences was obtained, which is essen‐
tial for subsequent classiϐication.

2.1. Classification of the Embeddings

In this study, a sequence classiϐication approach
for enzyme sequences is employed using a classiϐier
based on Autoencoders with a multi‐level structure.
The main objective is to accurately identify and then
categorize chitinase enzyme sequences.

In the ϐirst level of the classiϐier, an evaluation is
performed to determine if a given sequence corre‐
sponds to an enzyme. If the presence of an enzyme is
conϐirmed, the sequence is directed to the next level of
the classiϐier. In this second level, the prediction of the
enzyme family to which the studied sequence belongs
is carried out. The ϐlow of processes of the multi‐level
classiϐier used in this work is illustrated in Fig. 1.

Due to the limited representativeness of the
available sequences for model construction, the
SMOTEmethod [17–19]was employed. This approach
allowed for the generation of synthetic data, resulting
in improved outcomes as shown in Tables 2, 3, and
4. It is important to highlight that the number of
sequences signiϐicantly increased from 439 to over
700 through this strategy.

2.1.1. First Level

In the initial stage of the classiϐier, an anomalous
Autoencoder architecture is used for the identiϐica‐
tion of enzyme sequences. This Autoencoder has been
previously trained using training sequences (embed‐
dings) associated with the GH18 and GH19 families.
The primary function of the Autoencoder is to deter‐
mine whether a given sequence corresponds to an
enzyme or not.

Figure 1. Autoencoder‐based two‐level classifier

To fulϐill this purpose, a threshold is established
as a classiϐication criterion to determine whether a
vector reconstructed by the Autoencoder corresponds
to an enzyme or not. The calibration of this threshold
is performed with the aim of achieving a classiϐication
accuracy level of 99%, using equation (1) to compare
the reconstructed data with the training data.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(A, B) = 1
𝑛

𝑛

෍
𝑖=1

(𝐴𝑖 − 𝐵𝑖)2 (1)

Where:
𝐴𝑖: The corresponding element at position i of the
reconstructed data 𝐴,
𝐵𝑖: The corresponding element at position i of the
training data 𝐵 and
𝑛: sequence length
The architecture of the Autoencoder consists of two
parts: the encoder and the decoder. The encoder takes
the original input sequence, which has a dimension of
768, and transforms it into a lower‐dimensional latent
representation through a series of dense layers with
ReLU activation functions [14, 20]. Subsequently, the
decoder performs the reverse process, reconstructing
the original sequence from the latent representation.

During the training process, an exhaustive search
is applied, which is a technique used in hyperparam‐
eter optimization to ϐind the optimal combination of
parameter values for a machine learning model. Dif‐
ferent values are considered for the number of epochs
(25, 50, 100, 150), batch size (32, 64, 128), optimizer
(Adam, Nadam), and learning rate (0.001, 0.01, 0.1).
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Table 2. Comparison of the trainings of the First Level

Loss Function Loss Function
(Validation)

Without SMOTE 0.0202 0.0223
SMOTE 0.0127 0.0162
Hyperparameter
optimization.
(SMOTE)

0.0025 0.0074

The best values are underlined.

Figure 2. Loss function (MSE) of the first level classifier
using SMOTE

Another strategy used during model training to
prevent overϐitting was early stopping, implemented
through the “early_stopping” object. The validation
loss is monitored, and if it does not improve after a
certain number of epochs (in this case, 5), the training
is stopped, and the model weights are restored to the
best ones obtained. This ensures that the best model
conϐiguration is preserved and avoids unnecessary
training.

After running the grid search with all possible
combinations along with early stopping, the best val‐
ueswere found: a batch size of 32, 100 training epochs,
a learning rate of 0.001, and the Adam optimizer [21].
In Fig. 2, the graphical representation of the loss
function is shown, which corresponds to the mean
squared error (MSE). It can be observed how this loss
decreases throughout the 100 training epochs, indi‐
cating an improvement in the reconstruction of the
autoencoder.

Table 2 shows the results obtained after training
the ϐirst level, both before and after using SMOTE. It
can be observed that there is an improved perfor‐
mance when using SMOTE.
2.1.2. Second Level

The second level of the classiϐier focuses on pre‐
dicting the enzyme family to which each enzyme
belongs. This process is divided into two stages: Stage
1 and Stage 2 [22].

In Stage 1, the training of Autoencoders is carried
out individually, where each Autoencoder is exclu‐
sively trained with enzyme sequences related to a
speciϐic family. This process allows each Autoencoder
to learn latent representations of sequences from its
corresponding family.

In Stage 2, enzymes are classiϐied into their respec‐
tive families using the reconstruction losses calculated
through the pre‐trained Autoencoders (AE1, AE2, ...,
AEn). In our case, only two Autoencoders were pre‐
trained, one for each family (GH18 and GH19). To cal‐
culate these losses, each enzyme sequence is passed
through the pre‐trained Autoencoders, and the recon‐
struction losses are computed for each Autoencoder.
These losses are then used as inputs for a sigmoidal
dense layer classiϐier [14, 20], where the correspond‐
ing enzyme families (F1, F2, ..., FN) are the outputs.
In other words, the model is trained to predict the
enzyme family basedon the reconstruction losses gen‐
erated by the Autoencoders (Fig. 3).

To achieve this, the weights of the pre‐trained
Autoencoders are set as non‐trainable [22]. Then, a
joint network is created that takes the input sequence
and passes it through the two corresponding Autoen‐
coders for the GH18 andGH19 families. The outputs of
these Autoencoders are concatenated, and a dropout
layer is applied [23] to regularize the model. Next,
a dense layer with ReLU activation is employed to
learn intermediate representations. Finally, a softmax
activation is applied in the output layer for the classi‐
ϐication into one of the two analyzed enzyme families.
The ϐinal architecture of the two‐level classiϐier can be
seen in Fig. 4 once implemented using the TensorFlow
library.

For the training process, the samehyperparameter
optimization method as in Level 1 is used, along with
early stopping. In this case, the best values were a
batch size of 32, 50 training epochs, a learning rate of
0.1, and the Nadam optimizer [24]. The loss function
used during this classiϐication stage is the categori‐
cal cross‐entropy, which is shown in Fig. 5 over 50
epochs. This graph allows us to observe the perfor‐
mance obtained during training, while the accuracy is
used as the evaluation metric.

Table 3 shows the results obtained after train‐
ing the second level, both before and after applying
SMOTE. It can be observed that there is an improved
performance when using SMOTE.
2.2. Results Analysis

To evaluate the results of the developed classiϐier,
three existing methods for enzyme classiϐication were
examined, such as Ezypred [25], ECpred [26] and Pro‐
teInfer [27]. Although thesemethods generally exhibit
satisfactory performance, this performance might not
remain when dealing with sequences from imbal‐
anced and poorly represented classes, since they do
not address classiϐication into such kinds of families.
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Figure 3. Descriptive diagram of the workflow of the second level of the classifier. The processes AE1, AE2, ..., AEn
represent the Autoencoders of the corresponding enzyme families F1, F2, …, Fn

Figure 4. Architecture of the two‐level classifier (the
enzyme family classifier) once implemented using the
TensorFlow library

To test the different software, an external test
dataset was generated consisting of 20 enzyme
sequences from the GH18 and GH19 families, 10
for each one. Additionally, 10 non‐enzyme sequences
were included in the dataset, which were extracted
from the database UniProt1.

Tables 4, 5, and 6 present the results of the
comparison of the different selected software
regarding the classiϐication of sequences into enzymes
or non‐enzymes, evaluated using three key metrics:
precision, recall, and F1‐Score. The comparison
includes EzyPred, ECPred, Proteinfer, and the new
classiϐier using Autoencoders (AE).

Table 3. Comparison of the training of the Second Level

Loss Function Loss Function
(Validation)

Without SMOTE 0.0328 0.1163
SMOTE 0.0518 0.0330
Hyperparameter
optimization.
(SMOTE)

0.0392 0.0350

Best values are underlined.

Figure 5. Loss function (categorical cross‐entropy) of the
second level classifier using SMOTE

The results indicate that the Autoencoder‐based
classiϐier achieved remarkable performance in classi‐
fying sequences as enzymes or non‐enzymes, surpass‐
ing ormatching other software in terms of all the three
metrics.
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Table 4. Comparison of different softwares for the
classification of sequences into enzymes or
non‐enzymes (precision)

EzyPred ECPred Proteinfer AE
Not Enzyme 0.59 0.57 0.47 0.91
Enzyme 1.00 0.82 0.95 1.00

Best values are underlined.

Table 5. Comparison of different softwares for the
classification of sequences into enzymes or
non‐enzymes (recall)

EzyPred ECPred Proteinfer AE
Not Enzyme 1.00 0.40 0.90 1.00
Enzyme 0.77 0.90 0.67 0.97

Best values are underlined.

Table 6. Comparison of different softwares for the
classification of sequences into enzymes or
non‐enzymes (F1‐score)

EzyPred ECPred Proteinfer AE
Not Enzyme 0.74 0.47 0.62 0.95
Enzyme 0.87 0.86 0.78 0.98

Best values are underlined.

Figure 6. Comparison of Accuracy by different software
for enzyme classification or not

Figure 6 presents the analysis of the accuracy
obtained by various softwares when evaluating
whether a given sequence corresponds to an enzyme
or not. The results indicate that the proposed method
outperformed existing software, demonstrating
its effectiveness in the task of enzyme sequence
classiϐication compared to the competition.

In Table 7, the results obtained by the proposed
method using Autoencoders for the classiϐication
in different enzyme families, speciϐically GH18 and
GH19, are presented. The classiϐier achieved a remark‐
able result by achieving an accuracy of 0.90, indicat‐
ing a high efϐicacy in the task of classifying enzyme
sequences in these families.

Table 7. Results of the family classification

Precision Recall F1-Score
GH18 0.90 0.90 0.90
GH19 0.91 1.00 0.95
No Enzyme 0.89 0.80 0.84
accuracy 0.90
macro avg 0.90 0.90 0.90
weighted avg 0.90 0.90 0.90

3. Conclusion
The use of Autoencoders in a two‐level classiϐier

allows determination of whether a given sequence
belongs to the enzyme category or not. This is
achieved through an Anomalous Autoencoder, which
helps address the lack of representativeness of
enzymes. The developed method also provides
additional information about the enzyme family
to which the sequence belongs. To improve the
performance of the model at the two levels of the
classiϐier and reduce deviations from predictions in
relation to the actual values, preprocessing techniques
are applied, such as increasing the number of training
sequences in the imbalanced class through SMOTE.

The proposed approach ϐirst transforms the
sequences into embeddings with pre‐trained models
built from heterogeneous sources and then applies
Autoencoders for the classiϐication process. In a
comparison experiment with some outstanding
enzyme classiϐication softwares, this approach shows
encouraging external test set accuracy results (90%)
in detecting whether a sequence is an enzyme or not.
Additionally, as we mentioned before, this approach
provides information about the possible GH family
to which the sequence could belong, something that
those analyzed softwares do not offer.

Notes
1https://www.uniprot.org/
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