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Abstract:
The article considers the fundamental properties of the
two‐dimensional (2D) system described by the Roesser
model. The controllability and observability are analyzed
and the sufficient conditions under which the transfer
matrix is zero are given. It is shown that if the matrix
of the state equation A and B or A and C of the Roesser
model has full row rank (respectively, full column rank)
then there exists a nonsingular matrix of transformation
such that the new pair of new matrices is controllable
(observable). The numerical examples are given to show
the correctness of the obtained conditions.
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1. Introduction

Two‐dimensional (2D) dynamical systems have
been an active area of research for many years, owing
to their widespread applications in various ϐields such
as physics, biology, engineering, and economics. Some
interesting practical applications of a 2D systems the‐
ory may be found in [1–5]. The most popular models
of 2D linear systems are the models introduced by
Roesser [6], Fornasini‐Marchesini [7,8] and Kurek [9].
An overview of 2D linear systems theory is given in
[10–13].

In this article, we explore the behaviour of two‐
dimensional dynamical systems, deϐined by two dif‐
ferential matrix equations describing the dynamics in
horizontal and vertical directions. This approach for
2D systems modelling was proposed ϐirst by Roesser
in [6] and this type of model is called by his name.
This class of systems exhibits complex behaviour,
since there occurs interference between these two
dimensions. Understanding and analysing the dynam‐
ics of such systems is crucial for many real‐world
applications, including the design and control of phys‐
ical systems such as thermal processes, distributed
parameters systems, digital ϐilters, long transmission
lines and many others.

The dynamical properties of the Roesser model
have been the subject of many papers. The stability
problem has been solved in [14–18]. The asymptotic
stability of positive 2D linear systems has been inves‐
tigated in [19–22] and the robust stability in [23,24].

Controllability and observability are fundamental
concepts in the theory of dynamical systems and con‐
trol theory. Controllability refers to the ability to steer
a system from one state to another using a control
input, while observability refers to the ability to esti‐
mate the system’s internal state from the available
measurements and known steering. These concepts
are essential for understanding and designing control
systems for a wide range of applications, including
aerospace, robotics, power systems, and biomedical
engineering.

Controllability conditions for the 2D Roesser
model have been obtained by Kurek [25]. These con‐
ditions are based on checking the ranks of a system’s
matrices. Next, the controllability problem has been
considered in [26–30]. Observability is a dual notion
in comparison with controllability and may be found
in [29–31].

In the context of the Roessermodel, controllability
and observability are critical concepts that determine
the effectiveness of control system design. In many
practical cases, if 2D system is unobservable and/or
uncontrollable, the most popular control strategies
cannot be applied. In particular, a controllable and
observable system can be easily stabilized using feed‐
back control techniques. This is because the inter‐
nal state of the system can be accurately estimated
from its output measurements, and an appropriate
control input can be designed to stabilize the system.
Using the proposed similarity operation on the matri‐
ces 𝐴 and 𝐵, we may transform our system into a
controllable and observable one. This mathematical
operation opens up the possibility of utilizing well‐
known control algorithms to design a desired dynamic
of the system. Finally, through the inverse transfor‐
mation, we return to the original state‐space model.
The results presented in the manuscript expand the
potential for achieving better dynamical performance
of the control 2D system.

Another important concept in control theory is the
zeroing of the transfer matrix. The transfer matrix
of a system is a mathematical representation that
describes the relationship between the input and out‐
put of the system. Zeroing the transfer matrix of a
system refers to the ability to maintain the output of
the system at zero, irrespective of the input.
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This concept is particularly relevant in the design
of robust control systems, where the objective is to
ensure that the system remains stable even in the
presence of disturbances. This problem has been con‐
sidered in [32,33].

In this article, the controllability, observability,
and the transfer matrix zeroing of the Roesser model
will be considered. It will be shown that for uncon‐
trollable and unobservable matrices of the system,
there exists a nonsingular matrix that transforms
these matrices into controllable and observable ones.
Sufϐicient conditions for the existence of such a linear
transformation will be given and proved. Moreover,
sufϐicient conditions for zeroing of the transfer matrix
of the Roesser model will be established. Numeri‐
cal examples will illustrate the obtained conditions’
utility.

2. Controllability and Observability of the
Roesser Model
Consider the discrete 2D Roesser‐type model

described by the state‐space equations of the form

ቈ𝑥
ℎ
𝑖+1,𝑗
𝑥𝑣𝑖,𝑗+1

 = 𝐴 ቈ𝑥
ℎ
𝑖𝑗
𝑥𝑣𝑖𝑗

 + 𝐵𝑢𝑖𝑗 , 𝑖, 𝑗 = 0, 1, …

𝑦𝑖𝑗 = 𝐶 ቈ𝑥
ℎ
𝑖𝑗
𝑥𝑣𝑖𝑗

 ,
(1a)

where 𝑥ℎ𝑖𝑗 ∈ ℝ𝑛1 is the horizontal state vector,
𝑥𝑣𝑖𝑗 ∈ ℝ𝑛2 is the vertical state vector, 𝑢𝑖𝑗 ∈ ℝ𝑚

is the input vector, 𝑦𝑖𝑗 ∈ ℝ𝑝 is the output vector and
takes the following forms

𝐴 = ቈ𝐴11 𝐴12
𝐴21 𝐴22 , 𝐵 = ቈ𝐵1𝐵2 ,

𝐴11 ∈ ℝ𝑛1×𝑛1 , 𝐴12 ∈ ℝ𝑛1×𝑛2 , 𝐵1 ∈ ℝ𝑛1 ,
𝐴21 ∈ ℝ𝑛2×𝑛1 , 𝐴22 ∈ ℝ𝑛2×𝑛2 , 𝐵2 ∈ ℝ𝑛2 ,
𝐶 = ൣ𝐶1 𝐶2൧ , 𝐶1 ∈ ℝ𝑝×𝑛1 , 𝐶2 ∈ ℝ𝑝×𝑛2 .

(1b)

Deϐinition 1. The Roesser model (1) is called con-
trollable in the rectangle [(0, 0), (𝑘1, 𝑘2)] if for every
boundary condition 𝑥ℎ0,𝑗 , 𝑥𝑣𝑖,0, 𝑖 ∈ [0, 𝑘1], 𝑗 ∈ [0, 𝑘2]
and every vector 𝑥𝑓 ∈ ℝ𝑛 there exists a sequence of
inputs 𝑢𝑖𝑗 , (0, 0) ≤ (𝑖, 𝑗) < (𝑘1 − 1, 𝑘2 − 1) such that
𝑥𝑘1 ,𝑘2 = 𝑥𝑓 .

Theorem 1. The Roesser model (1) is controllable in
the rectangle [(0, 0), (𝑘1, 𝑘2)] if and only if

rank ቈ𝕀𝑛1𝑧1 − 𝐴11 −𝐴12 𝐵1
−𝐴21 𝕀𝑛2𝑧2 − 𝐴22 𝐵2 = 𝑛 (2)

for 𝑛 = 𝑛1 + 𝑛2 and all 𝑧1, 𝑧2 ∈ ℂ.

The proof is given in [31].

Deϐinition 2. The Roesser model (1) is called observ-
able in the rectangle [(0, 0), (𝑘1, 𝑘2)] if knowing
sequences of its inputs 𝑢𝑖𝑗 and outputs 𝑦𝑖𝑗 for (𝑖, 𝑗) ∈
[(0, 0), (𝑘1, 𝑘2)] it is possible to compute its unique ini-
tial state 𝑥00 ∈ ℝ𝑛 .

Theorem2. The Roessermodel (1) is observable in the
rectangle [(0, 0), (𝑘1, 𝑘2)] if and only if

rank 
𝕀𝑛1𝑧1 − 𝐴11 −𝐴12

−𝐴21 𝕀𝑛2𝑧2 − 𝐴22
𝐶1 𝐶2

 = 𝑛 (3)

for all 𝑧1, 𝑧2 ∈ ℂ.

The proof is given in [31].
In the next theorem, we will introduce the linear

transformation of the state equations (1).

Theorem 3. If

rank ൣ𝐴 𝐵൧ = 𝑛 (4a)

and
rank ቂ𝐴𝐴𝑇 + 𝐵𝐵𝑇ቃ = 𝑛 (4b)

then there exists a nonsingular matrix𝑀 ∈ ℝ𝑛×𝑛 such
that the pair

(𝐴, 𝐵), 𝐴 = 𝑀𝐴, 𝐵 = 𝑀𝐵 (5)

is controllable.

Proof. It will be shown that if the pair of matrices
(𝐴, 𝐵) satisϐies the condition (4a) then there exists
a nonsingular matrix 𝑀 such that the pair (5) is con‐
trollable. From (5) we have

𝑀 ൣ𝐴 𝐵൧ = ቂ𝐴 𝐵ቃ . (6)

Postmultiplying (6) by the matrix ൣ𝐴 𝐵൧𝑇 we obtain

𝑀 ൣ𝐴𝐴𝑇 + 𝐵𝐵𝑇൧ = ቂ𝐴𝐴𝑇 + 𝐵𝐵𝑇ቃ (7)

From (4a) it follows that the matrix ൣ𝐴𝐴𝑇 + 𝐵𝐵𝑇൧ is
nonsingular and from (7) we have

𝑀 = ቂ𝐴𝐴𝑇 + 𝐵𝐵𝑇ቃ ൣ𝐴𝐴𝑇 + 𝐵𝐵𝑇൧−1 . (8)

The matrix 𝑀 given by (8) is nonsingular since
rank ቂ𝐴 𝐵ቃ = 𝑛.

Example 1. Consider the Roesser model (1) with the
matrices

𝐴 = ቈ 𝐴11 𝐴12
𝐴21 𝐴22

 = 
1 0 0
−2 1 2
1 0 1

 ,

𝐵 = ቈ 𝐵1
𝐵2

 = 
0
1
0
 .

(9)

The pair (𝐴, 𝐵) given by (9) is uncontrollable but it
satisϔies the condition (4a) since

rank ൣ𝐴 𝐵൧ = rank 
1 0 0 0
−2 1 2 1
1 0 1 0

 = 3 = 𝑛.

(10)
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We are looking for the nonsingular matrix
𝑀 ∈ ℝ3×3 such that the corresponding pair (5) is
controllable in the form

𝐴 = 
1 0 1
−2 1 0
1 0 2

 , 𝐵 = 
0
1
2
 . (11)

Note, that condition (4b) is met, since

rank ቂ𝐴𝐴𝑇 + 𝐵𝐵𝑇ቃ = rank 
1 0 2
−2 6 −2
1 4 3

 = 3. (12)

Using (8), (9) and (11) we obtain

𝑀 = ቂ𝐴𝐴𝑇 + 𝐵𝐵𝑇ቃ ൣ𝐴𝐴𝑇 + 𝐵𝐵𝑇൧−1

= ቐ
1 0 1
−2 1 0
1 0 2

 
1 −2 1
0 1 0
0 2 1

 + 
0
1
2
 ൣ0 1 0൧ቑ

× ቐ
1 0 0
−2 1 2
1 0 1

 
1 −2 1
0 1 0
0 2 1

 + 
0
1
0
 ൣ0 1 0൧ቑ

−1

= 
1 0 2
−2 6 −2
1 4 3

 
1 −2 1
−2 10 0
1 0 2



−1

= 
0 0 1
2 1 −2
3 1 0

 .

(13)

The matrix (13) is nonsingular since

det𝑀 = ቮ
0 0 1
2 1 −2
3 1 0

ቮ = −1. (14)

Taking into account the duality of controllability
and observability property, a similar approachmay be
applied to the pair of matrices (𝐴, 𝐶).

Theorem 4. If

rank ቈ𝐴𝐶 = 𝑛 (15a)

and
rank ቂ𝐴𝑇𝐴 + 𝐶𝑇𝐶ቃ = 𝑛. (15b)

then there exists a nonsingular matrix 𝑁 ∈ ℝ𝑛×𝑛 such
that the pair

൫�̂�, �̂�൯ , �̂� = 𝐴𝑁, �̂� = 𝐶𝑁 (16)

is observable.

Proof. The proof is similar (dual) to the proof of
Theorem 2.

Remark 1. In a similar way as in the proof of Theorem
2 it can be shown that there exists a nonsingular matrix
𝑀 satisfying the equality

𝑀 ൣ𝐴 𝐵൧ = ൣ�̂� �̂�൧ , (17)

where the pair (𝐴, 𝐵) is controllable and the pair (�̂�, �̂�)
is uncontrollable.

3. Zeroing of the Transfer Matrix of the
Roesser Model
Consider the Roesser model (1) with the transfer

matrix
𝑇(𝑧1, 𝑧2) =

ൣ𝐶1 𝐶2൧ ቈ
𝕀𝑛1𝑧1 − 𝐴11 −𝐴12

−𝐴21 𝕀𝑛2𝑧2 − 𝐴22
−1

ቈ𝐵1𝐵2 .
(18)

Sufϐicient conditions will be established for zero‐
ing the transfer matrix (18).
Theorem 5. The transfer matrix (18) of the Roesser
model (1) is a zeromatrix if the following conditions are
satisϔied:
1) the pair (𝐴, 𝐵) is uncontrollable and the pair (𝐴, 𝐶)

is unobservable;

2) the product of the matrices 𝐶 and 𝐵 is zero matrix,
i.e.

𝐶𝐵 = 0. (19)
Proof. Similarly to the standard linear system [33] for
the proof of the Roesser model we have the following
properties:

1) If the pair (𝐴, 𝐵) is uncontrollable and the pair
(𝐴, 𝐶) is unobservable then at least one entry of the
adjoint matrix

adj ቈ𝕀𝑛1𝑧1 − 𝐴11 −𝐴12
−𝐴21 𝕀𝑛2𝑧2 − 𝐴22 (20)

is zero.
2) The product 𝐶𝐵 chooses in the matrix (20) the

zero entries.
Therefore, if conditions 1) and 2) are satisϐied then

the transfer matrix (18) is a zero matrix.
Example 2. Consider the Roesser model (1) with the
matrices

𝐴 = ቈ 𝐴11 𝐴12
𝐴21 𝐴22

 = 
1 2 2
−1 −2 −2
1 1 0

 ,

𝐵 = ቈ 𝐵1
𝐵2

 = 
1
−1
1

 ,

𝐶 = ൣ 𝐶1 𝐶2 ൧ = ൣ 1 1 0 ൧ .

(21)

Note that the pair (𝐴, 𝐵) is uncontrollable since

rank ቈ 𝕀𝑛1𝑧1 − 𝐴11 −𝐴12 𝐵1
−𝐴21 𝕀𝑛2𝑧2 − 𝐴22 𝐵2 

=rank 
𝑧1 − 1 −2 −2 1
1 𝑧1 + 2 2 −1
−1 −1 𝑧2 1

 < 3 = 𝑛

(22)
and the pair (𝐴, 𝐶) is unobservable since

rank 
𝕀𝑛1𝑧1 − 𝐴11 −𝐴12

−𝐴21 𝕀𝑛2𝑧2 − 𝐴22
𝐶1 𝐶2



=rank
⎡
⎢
⎢
⎣

𝑧1 − 1 −2 −2
1 𝑧1 + 2 2
−1 −1 𝑧2
1 1 0

⎤
⎥
⎥
⎦
< 3 = 𝑛.

(23)
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Therefore, the Roessermodel with (21) is uncontrol-
lable and unobservable.

The condition (19) is also satisϔied since

𝐶𝐵 = ൣ1 1 0൧ 
1
−1
1
 = 0. (24)

The transfer function of the Roesser model with the
matrices (21) is zero since

𝑇(𝑧1, 𝑧2) =

= ൣ1 1 0൧ 
𝑧1 − 1 −2 −2
1 𝑧1 + 2 2
−1 −1 𝑧2



−1


1
−1
1


= 0,

(25)

since


𝑧1 − 1 −2 −2
1 𝑧1 + 2 2
−1 −1 𝑧2



−1

=
⎡
⎢
⎢
⎢
⎣

𝑧1𝑧2+2𝑧2+2
𝑧1𝑧2(1+𝑧1)

𝑧2+1
𝑧1𝑧2(1+𝑧1)

2
𝑧1𝑧2+𝑧2

− 𝑧2+2
𝑧1𝑧2(1+𝑧1)

𝑧1𝑧2−𝑧2−2
𝑧1𝑧2(1+𝑧1)

−2
𝑧1𝑧2+𝑧21

𝑧1𝑧2
1

𝑧1𝑧2
1
𝑧2

⎤
⎥
⎥
⎥
⎦

.

(26)

This simple example conϐirms the Theorem 5.
Theorem 6. The transfer matrix (18) of the Roesser
model (1) is zero if
1)

rank ቈ𝐴11 𝐴12 𝐵1
𝐴21 𝐴22 𝐵2 < 𝑛,

rank 
𝐴11 𝐴12
𝐴21 𝐴22
𝐶1 𝐶2

 < 𝑛;
(27)

2) the condition (19) is satisϔied, i.e.

ൣ𝐶1 𝐶2൧ ቈ
𝐵1
𝐵2 = 𝐶1𝐵1 + 𝐶2𝐵2 = 0. (28)

Proof. From(2) and (3) it follows that if the conditions
(27) are satisϐied then the Roessermodel (1) is uncon‐
trollable and unobservable. Therefore, by Theorem 5
the transfer matrix (18) of the Roesser model (1) is
zero.
Example 3. Consider the Roesser model (1) with the
matrices (21). The model satisϔies the condition (27)
since

rank ቈ𝐴11 𝐴12 𝐵1
𝐴21 𝐴22 𝐵2 =rank 

1 2 2 1
−1 −2 −2 −1
1 1 0 1



=2 < 𝑛 = 3,

rank 
𝐴11 𝐴12
𝐴21 𝐴22
𝐶1 𝐶2

 =rank
⎡
⎢
⎢
⎣

1 2 2
−1 −2 −2
1 1 0
1 1 0

⎤
⎥
⎥
⎦

=2 < 𝑛 = 3.
(29)

From (24) it follows that the condition 𝐶𝐵 = 0
is also satisϔied. Therefore, by Theorem 6 the transfer
matrix of the Roesser model with the matrices (21) is
zero.

4. Concluding Remarks
The Roesser model is one of the most popular

mathematical models used in control systems engi‐
neering to describe the dynamics of processes tak‐
ing place in two dimensions. This article explores the
concepts of controllability, observability, and zeroing
of the transfer matrix in the context of the Roesser
model.

Zeroing of the transfer matrix refers to the ability
to drive the output of the system to zero, irrespective
of the input. This concept is particularly relevant in the
design of robust control systems, where the objective
is to ensure that the system remains stable even in the
presence of disturbances.

In this article, we have shown that for uncontrol‐
lable and unobservable matrices of the system, there
exists a nonsingular matrix that transforms these
matrices into controllable and observable ones. Sufϐi‐
cient conditions for the existence of such linear trans‐
formation have been given and proved. Moreover, suf‐
ϐicient conditions for the transfer matrix zeroing of
the Roesser model have been established. Numerical
examples have been presented that show the useful‐
ness of the introduced conditions.
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