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Abstract:
The IT industry is advancing rapidly, with virtually every
branch of modern computing experiencing swift develop‐
ment. Concepts such as Cloud Computing and Artificial
Intelligence no longer surprise anyone. Recently, Soft‐
ware Defined Networks (SDN) have been gaining signif‐
icant popularity. This innovative approach to computer
networks allows for greater flexibility and is, therefore,
much more well‐known in the world of cloud computing
than in traditional network implementations.
This paper introduces the concept of SDN and Network
Functions Virtualization (NFV) and outlines all the chal‐
lenges and security issues associated with the cloud
environment. The dynamic nature of the IT landscape
requires constant adaptation to emerging technologies,
and SDN represents a noteworthy evolution in the realm
of computer networking. Platforms such as SDN and
open‐source tools enabling the creation of private cloud
environments such as OpenStack or OpenNebula were
compared. At the same time, aspects like security, net‐
work performance, flexibility, and scalability were ana‐
lyzed. Based on the prior analysis, a comprehensive cloud
environment was built using the OpenStack solution and
SDN ‐ OpenDaylight was deployed. Additional tests con‐
ducted on the OpenStack cloud, both with and without
SDN, demonstrated the superiority of SDN implementa‐
tion in the cloud.

Keywords: Software‐defined network, NFV, cloud com‐
puting, OpenDaylight, OpenStack, OpenNebula

1. Introduction
The concept of Software‐Deϐined Networking

(SDN) posits that networks should be designed to
be easily managed through specialized software.
The foundation of this approach undoubtedly lies
in the separation of individual components that
communicate with each other through interfaces.
Control functions must be centralized on the
controller, while the devices are responsible solely for
data transmission and executing instructions received
from the controller.

This entails a classic division into the Control Plane
(controller) and Data Plane (packet forwarding) [11].
Equally important is the Application Plane. On this
level, applications are developed, enabling communi‐
cation and interaction with the entire architecture.
The Application Plane is a typical abstract layer [4].

The SDN technology originated from the research
project Clean Slate at Stanford University, partly
inspired by the OpenFlow protocol. The operational
concept of OpenFlow was initially introduced in the
paper titled ’OpenFlow: Enabling Innovation in Cam‐
pus Networks’ by Stanford University in 2008, align‐
ing with the idea of Network Functions Virtualization
(NFV) [15].

A year later, Professor Nick McKeown formally
presented the concept of SDN. In 2012, the American
company Google successfully implemented SDN tech‐
nology in its backbone network, signiϐicantly increas‐
ing Google’s SDN utilization to over 70%. This event
marked a breakthrough in the development and future
of SDN networks, prompting major global technology
companies to introduce their SDN solutions to the
market progressively [31].

SDN networks are commonly divided into Under‐
lay and Overlay networks. While these terms may
sound mysterious, it is interesting that well‐known
technologies, such as IPsec and MPLS (Multiprotocol
Label Switching), involve Overlay networks. The Over‐
lay layer in SDN networks is where intelligent func‐
tions such as segmentation and various policies are
implemented. Despite variations in communication
protocols at the Overlay layer, depending on the man‐
ufacturer, the VXLAN (Virtual Extensible LAN) pro‐
tocol is commonly used for encapsulation to address
scalability issues [31,32].

On the other hand, the Underlay network is
designed for maximum simplicity, serving as
a routable IP network. This is why some SDN
solutions may involve devices of both older and
newer generations, with critical Overlay network
functions implemented. The Underlay network has
fewer tasks and is intended to provide straightforward
routing. Overall, SDN technology offers a nuanced
architecture that combines simplicity in the Underlay
network with intelligent functionality in the Overlay
network.
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Additionally, three of themost involved companies
in the project, namely Cisco, Juniper Networks, and
Extreme Networks, have disclosed their development
plans for the NFV architecture proposed by the Euro‐
pean Telecommunications Standards Institute (ETSI)
[31]. In addition to the IT mentioned above industry
giants, there is the OpenDaylight initiative, whose task
is to promote implementations. Due to compatibility
requirements, OpenDaylight is tailored to the stan‐
dard SDN ONN architecture along with integration
with NFV.

The SDN network’s structure in OpenDaylight is
divided into three parts:
‐ Network applications and business processes
‐ The control platform
‐ Virtual and physical network devices

OpenDaylight provides a Java Virtual Machine
(JVM), and to enhance compatibility with modules
from other companies, OpenDaylight also features
plug‐in modules that allow for additional extension of
SDN functionality [5].

2. SDN Network Requirements
The implementation of SDN at an appropriate level

involves meeting a series of requirements. As men‐
tioned earlier, one of the most crucial, if not the most
critical, requirements is the virtualization of the entire
network (overlay and underlay networks). NFV (Net‐
work Functions Virtualization) provides both internal
and external virtualization. Internal virtualization is
used, for example, for virtualizing network devices
that serve as network elements. On the other hand,
external virtualization connects networks, thus creat‐
ing a uniϐied virtual network [23]. Equally important
is the Application Plane. On this level, applications are
developed, enabling communication and interaction
with the entire architecture. The Application Plane is
a typical abstract layer [32].

SDN networks are also characterized by automa‐
tion. By eliminating repetitive tasks often performed
in traditional networks, we can rapidly create envi‐
ronments and automatically set network parameters
related to security or Quality of Service (QoS) poli‐
cies. Another element that perfectly encapsulates the
idea of Software‐Deϐined Networks is programmabil‐
ity. SDN addresses challenges traditional networks
struggle with because their concept relies solely on
packet exchange between hosts.

However, the vast amount of data transmitted
over the Internet today, coupled with the evolu‐
tion of technologies like Internet Protocol Television
(IPTV), video conferencing, Voice over Internet Pro‐
tocol (VoIP), the rapid increase in network‐connected
devices, and online gaming, led to the quest for a
new paradigm. The programmability of SDN networks
makes them resemble mobile applications on smart‐
phones rather than traditional networks. Network
Engineers can seamlessly program and manage these
networks through Application Programming Inter‐
faces (APIs). Additionally, open APIs facilitate integra‐
tion with other tools [19].

3. Use of SDN Networks
SDN continues to gain popularity. We previously

faced technological gaps in numerous areas, and SDN
has been ϐilling these gaps. Currently, the most cru‐
cial domain where SDN is successfully utilized is in
Data Centers. The history of SDN (Software‐Deϐined
Networking) can be traced back to Data Centers. Some
even refer to SDN networks as Software‐Deϐined Data
Centers (SDDC). This designation is not surprising,
given that implementing SDN in Data Centers allows
for automation, a revolutionary approach to network
management, and the ability to create new environ‐
ments. SDN is an excellent idea in environments grap‐
pling with security issues and complex infrastructure.
In homogenous environments, deploying SDN on a
large scale may not be practical.

Currently, the most popular commercial SDN solu‐
tion in the market is undoubtedly Cisco ACI. It serves
as an SDN controller, offering a comprehensive set of
IP solutions with full integration from the data link
layer to the application layer within the SDN network.
Additionally, it supports the VXLAN protocol and NFV.
One of the advantages of this solution is its capabil‐
ity for cloud deployment, and the tool itself support
AWS Cloud. Also highly popular are VMware NSX and
Juniper Contrail Networking. An essential distinction
between Cisco ACI and VMware NSX is that Cisco ACI
is a solution encompassing software and hardware
components. Its implementation requires building the
infrastructure around Nexus 9000 switches operating
in a Spine‐Leaf architecture. In contrast, VMware NSX
operates exclusively at the overlay layer and does not
directly impact the physical network layer. However,
an undeniable advantage is that it can function in
almost any infrastructure [12].

Among open‐source solutions, ONOS SDN con‐
troller and OpenDaylight take the lead. In the later
part of the paper, OpenDaylight was utilized. This
solution is the foundation for commercial controllers
like Fujitsu Virtuora and Ericsson SDN Controller.
OpenDaylight’s strengths include, among others, sup‐
port for multiple protocols in the Service Abstraction
Layer (SBI), encompassing protocols such as Border
Gateway Protocol (BGP), OpenFlow, NETCONF, Sim‐
ple NetworkManagement Protocol (SNMP), and Open
vSwitch Database (OVSDB) [2].

Another area where SDN is gaining popularity is
campus networks, with users being the primary focus
in this case. SDN leverages the technology of numer‐
ical control separation to achieve centralized logic
management and enhance the programmability of the
control plane. This signiϐicantly facilitates the simpli‐
ϐication of network management. Additionally, it pos‐
itively impacts performance and security, which is a
signiϐicant advantage because, as we know, traditional
campus networks lack ϐlexibility, making changes
challenging and signiϐicantly affecting response times
in case of failures and associated costs. The third area
where the utilization of SDN technology is experi‐
encing signiϐicant growth is in Wide Area Networks
(WANs).
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Figure 1. OpenDaylight Architecture [3]

The Software‐Deϐined Wide Area Network (SD‐
WAN) is particularly well‐known in computer net‐
works. This technology enables programmatic control
of loadbalancing and routing, aligning seamlesslywith
the concept known as Application‐driven network‐
ing. The expectation from this approach is that the
network will cater to the needs of both customers
and services, aligning with various applications [27].
The most popular project showing how important
this technology is Google’s project, which built the B4
structure based on SDN [31].

4. SDN Security and Attack Prevention
Despite its numerous advantages, SDN architec‐

ture also comes with security challenges. Beyond the
classical threat vectors such asDenial of Service (DoS),
data leaks, or unauthorized access, SDN introduces
speciϐic threats unique to its architecture. Examples
of these threats include attacks targeting the con‐
troller software and attempts to disrupt communica‐
tion between the control plane and the data plane, as
well as between the control plane and the application
plane [1]. Additionally, controllers with vulnerabili‐
ties can cause signiϐicant harm to our network. An
attacker gaining access to the controller can manage
our network by programming switches.

Issues related to Man‐in‐the‐Middle (MITM)
attacks are undoubtedly one of SDN’s most critical
security concerns. A successfully executed MITM
attack allows eavesdropping and modifying trafϐic
ϐlow between routers and the network endpoint.
Securing the communication channel in SDN involves
using the Transport Layer Security (TLS) protocol,
which is supported by OpenFlow by default. However,
it is essential to note that the TLS protocol and Public
Key Infrastructure (PKI) will not protect us if the
attacker gains access to the control plane. At this
stage, the attacker can easily leverage switches to
launch Distributed Denial of Service (DDoS) attacks.
Another overlooked point in SDN security is the
computers connected to the controller. Computers
are often overlooked, and the issue of security is
downplayed. In the case of vulnerabilities through
computers, gaining access to the controller can be
easily accomplished [26].

Despite its incredible capabilities, SDN is unfortu‐
nately susceptible to attacks and failures. For instance,
in the event of a controller failure, it is advisable to
have replicated controllers prepared. It is also recom‐
mended to use different controllers, as having identi‐
cal ones everywhere introduces the risk of encounter‐
ing the same software bugs across the entire network
[13].

Access to the controller must be securely guarded,
and communication with the control plane should
only be allowed for trusted systems and adminis‐
trators. In the context of SDN, it is crucial to rec‐
ognize the AAA method (Authentication, Authoriza‐
tion, and Accounting). Authentication mechanisms
such as certiϐicates, passwords, or tokens should
be implemented. The authorization process should
clearly deϐine the permissions and access to speciϐic
resources that an individual has on the control plane.

Critical to security contexts are Intrusion Detec‐
tion Systems (IDS). IDS is utilized in both traditional
infrastructure and cloud infrastructure. The role of
IDS is to analyze and identify suspicious activities,
promptly notifying IT security teams [17].

Speaking about SDN, we must remember the
OpenFlow protocol. Unfortunately, in this case, we
encounter additional security challenges. A crucial
matter is the protection of the control plane against
DoS/DDoS attacks. A specialized framework called
AVANT‐GUARD has been developed to address such
threats in OpenFlow‐based networks. This framework
consists of two modules and is located in the data
plane [28].

5. SDN and NFV in the Cloud
In today’s IT industry, two solutions stand out in

popularity. Undoubtedly, these are Artiϐicial Intelli‐
gence and Cloud Computing. In this discussion, we
will focus on the latter, namely cloud computing. As is
customary in the IT industry, every branch of modern
computing evolves almost daily, and the same holds
for cloud computing. The concept of cloud computing
is not new—it has been a known model for deliver‐
ing services over the Internet for several years. Cloud
computing offers various services, with the most pop‐
ular models undoubtedly being Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Soft‐
ware as a Service (SaaS).
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In the IaaS model, the service provider makes
their infrastructure available to us (such as virtual
machines and load balancers). PaaS allows us to
deploy our applications using the provider’s infras‐
tructure, while SaaS is simply pre‐built software from
the cloud provider that we can use on the cloud plat‐
form [18].

It is inconceivable to envision theoperationof even
a small organizationwithout leveraging the beneϐits of
cloud computing. However, with the development of
this service and the simultaneous increase in its pop‐
ularity, it becomes more vulnerable to cybercriminal
attacks.Hence, oneof theprimary elements constantly
addressed by cloud service providers is improving
the overall security of their services. Traditional net‐
works, even in the case of cloud service providers, are
now being replaced by SDN to enhance security [23].
Because every second sees amassive amount of trafϐic
generated by cloud clients, not only is security crucial
in the case of cloud networks, but so is reliability.
Opting for a SDN instead of traditional networks can
beneϐit us as cloud service providers [9]. There are
plenty of examples of such advantages, and among the
most signiϐicant are the “programmable” approach to
network management, the ability to experiment with
networks without impacting the production environ‐
ment, the potential for network granularity, and the
enhancement of its responsiveness. Traditional clouds
are incredibly reliable and secure, but there is and
will never be any technology that is 100% secure.
The Achilles’ heel of clouds can be DoS/DDoS attacks,
so to mitigate this threat, it is advisable to abandon
traditional networks in favour of SDN, which features
an isolated control layer from the data layer [23].

6. SDN Integration in the Cloud and Tests
As for SDN controllers, numerous options are

available in the market, but OpenDaylight has been
selected for this study. Both OpenDaylight and Flood‐
light are open‐source SDN management tools, provid‐
ing signiϐicant ϐlexibility, which allows them to be used
in various environments. Undoubtedly, the advantage
of OpenDaylight lies in its complexity, making it suit‐
able for more advanced projects, and the fact that
a signiϐicantly larger community develops it. In arti‐
cle [24], the authors compared controllers, analyz‐
ing network performance, architecture, and QoS. The
research was conducted with particular emphasis on
delays anddata loss in various network topologies and
usage scenarios such as cloud computing or multime‐
dia processing. The results of the tests conducted by
the authors indicated that in as many as 95% of cases,
OpenDaylight outperformed Floodlight’s quality.

The authors compared OpenDaylight with Flood‐
light across three different network topologies, con‐
sidering three scenarios: one with no cross‐trafϐic,
another where nearly half of the bandwidth was cross
trafϐic, and a third where the whole bandwidth was
ϐilled with cross trafϐic.

Table 1. Best controller in different situations [24]

Topology Load Latency
Single Low load OpenDaylight

(2.5 times better)
Single Mid load Same
Single Heavy load Same
Linear Low load OpenDaylight

(4.4 times better)
Linear Mid load Same
Linear Heavy load Floodlight

(1.2 times better)
Tree Low load OpenDaylight

(2.1 times better)
Tree Mid load OpenDaylight

(4.5 times better)
Tree Heavy load Same

In the tests, emphasis was placed on latency, jitter,
packet loss, and throughput. The authors’ researchhas
shown that OpenDaylight performs signiϐicantly bet‐
ter in environments where tree topologies are preva‐
lent, such as in Data Centers and cloud computing
environments (see: Table 1).

Hence, the choice fell on the OpenDaylight plat‐
form.

A signiϐicant factor was also that OpenDaylight
is signiϐicantly more ϐlexible than Floodlight. Flood‐
light mainly focuses on the OpenFlow protocol, while
OpenDaylight supports OpenFlow, Netconf, and YANG.
OpenDaylight is an open‐source SDN controller under
the auspices of the Linux Foundation. The fact that it
is an open‐source project is signiϐicant, as an open‐
source product was chosen to implement cloud com‐
puting in this work. OpenDaylight is fully vendor‐
independent and can support various network tech‐
nologies and devices, providing ϐlexibility. With its
modular architecture, it is highly ϐlexible and scalable.
Moreover, the tool is implemented in Java, allowing it
to be installed on virtually any operating system with
a Java Virtual Machine (JVM) [3].

OpenDaylight is, therefore, an excellent choice
when it comes to integration with the OpenStack plat‐
form. This is particularly important because another
dilemma was the cloud platform.

6.1. The Choice Between OpenStack and OpenNebula

Two main options were considered: OpenStack
and OpenNebula. These are open‐source software
designed for creating both private and public clouds.

OpenStack is released under the Apache license
and consists of various modules. It originated in
2010 as a collaborative project between NASA and
RackspaceHosting. Over time, the project saw increas‐
ing contributions from multiple companies and orga‐
nizations, including major players such as Red Hat,
Huawei, Ericsson, Intel, Dell, T‐Mobile, Canonical,
Fujitsu, HP, Cisco, and Bloomberg.

Currently, the project is managed by the Open
Infrastructure Foundation (formerly known as the
OpenStack Foundation), bringing together over 500
companies [10].
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Figure 2. OpenStack Cloud Infrastructure [21]

The latest version of OpenStack, 2023.2 Bobcat,
consists of over 40 components andmodules, many of
which are optional [21].

The key components include:
‐ Nova (Compute): a module for managing virtual
machines (VMs) and overseeing the entire lifecycle
of instantiated instances;

‐ Neutron (Networking): responsible for network‐
ing and connection management between various
instances and resources;

‐ Cinder (Block Storage): enables block‐level data
storage in the cloud, which is crucial for virtual
machine instances;

‐ Swift (Object Storage): a module responsible for
storing and providing access to objects, such asmul‐
timedia ϐiles;

‐ Glance (Imageservice): amodule that includesdis‐
covering, registering, and retrieving virtualmachine
images;

‐ Keystone (Identity): facilitates authentication and
identitymanagement for all OpenStack components.
Among other popular and available components

on the OpenStack platform are, for instance, Ironic
(Bare Metal Provisioning Service), Manila (providing
ϐile sharing services in the cloud), Octavia (Load bal‐
ancer), Designate (DNS Service), Barbican (key and
certiϐicate management), Heat (Orchestration), Mag‐
num (Container Orchestration Engine Provisioning),
Trove (Database as a Service), Horizon (Dashboard),
and the modern Skyline (Next generation dashboard)
[10,21].

OpenNebula,much likeOpenStack, is also an open‐
source project enabling the creation of one’s cloud
computing infrastructure. It was initiated by Span‐
ish researchers Ignacio Martín Llorente and Rubén S.
Montero. The project aimed to create a platform well‐
suited for managing virtual machines in distributed
infrastructures.

Figure 3. Key features of OpenNebula [20]

Figure 4. Support for resiliency in OpenStack and
OpenNebula [30]

As the project evolved, the authors established
C12G Labs, now known as OpenNebula Systems,
focusing on designing, consulting, and implement‐
ing services based on the OpenNebula solution. The
software supports virtualization technologies such
as VMware, KVM, LXD, Kubernetes, and Docker.
Thanks to a highly user‐friendly interface, it allows for
easy infrastructure scalability and enables swift and
straightforward deployment and delivery of services
in the cloud [14,16].

OpenNebula is a fully platform‐independent
Enterprise‐class product with an open, ϐlexible, and
easily extensible architecture, making it suitable
for use as a private cloud, public cloud, or in
conjunction with another cloud as a hybrid cloud.
This platform has been implemented in the most
popular programming languages, such as Java, C,
C++, and Ruby. It allows centralized management
through data storage, monitoring, and network
virtualization technologies. Additionally, it allows
for integration with OpenCloud, Amazon EC2,
OpenStack, or OpenShift [14, 25]. When creating a
cloud environment based on OpenNebula, a machine
must be conϐigured as the front‐end, which will host
the cloud manager, while the remaining machines
must be conϐigured as slave nodes [29].
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Table 2. IaaS tools support for resiliency in OpenStack and OpenNebula [30]

Support OpenStack OpenNebula
Full and Bare Metal virtualization VMware, Hyper‐V, KVM, Xen, VirtualBox VMware, KVM, Xen
OS RHEL, Fedora, Debian, Ubuntu, SLES RHEL, Ubuntu, Debian, SLES, CentOS
Network Neutron, OVS, NSX, PLUMgrid dummy, ebtables, OVS, VLAN, VMware
Storage NFS, Ceph, LVM, Gluster, ZFS, Sheepdog NFS, Ceph
Object Storage Ceph, Cinder Ceph
Disk formats QCOW2, RAw, VHD, LVM, VMDK, VDI QCOW2, VMFS, LVM, RAW, DEV, Ceph
Container Virtualization LXC LXC

In favour of OpenStack compared to OpenNeb‐
ula, it has a much larger number of functions and
popularity, which automatically translates into much
better support in terms of the tool’s creators and
the infrastructure providers themselves. However, the
ϐinal decision to choose a cloud development tool
was made based on [30]’s work. In the above work,
the authors compared the ϐlexibility, performance,
and resilience of the most popular open‐source tools
for deploying cloud computing: OpenStack, OpenNeb‐
ula, and CloudStack. The tests that were conducted
showed that OpenStack is the most resilient. To thor‐
oughly investigate these issues, the authors expanded
the taxonomy provided in [8]. Since stability is the
primary and most important factor in cloud comput‐
ing, it was the key criterion when choosing a tool to
create a cloud computing environment for research
on the impact of SDN on cloud computing. System
resilience is nothing but the ability to adapt to failures
and continuous changes without compromising the
level of service availability. This aspect’s diversity of
infrastructure technologies positively affects the envi‐
ronment’s resilience. Table 2 presents a comparison
of IaaS tools supporting resiliency. Based on this data,
the support for resiliency was calculated considering
the number of supported technologies by the cloud
creation tool. OpenStack easily outperformed Open‐
Nebula here due to its excellent support for storage,
networking, containers, hypervisors, and operating
systems (see: Fig. 4).

Another critical criterion when choosing a cloud
computing tool was performance. In [30], the authors
conducted performance tests of OpenStack, OpenNeb‐
ula, andCloudStack. Theenvironment consistedof two
components: the cloud controller and the node. Per‐
formance was calculated based on 40 samples in each
micro‐test following [22]. The tests were conducted
using tools such as LINPACK, STREAM, and IPerf, along
with scientiϐic applications [6, 7], on four identical
Supermicro blades, each equipped with 24 GB RAM
at 1333 MHz, Intel Xeon X5560 (4 Cores, 8 Threads,
Max Turbo Frequency 3.20 GHz, Processor Base Fre‐
quency2.80GHz, Cache8MB), and3SATA II 7200RPM
physical disks in RAID5 conϐiguration connected via a
gigabit network [30]. In the performance test under
intensive loads, OpenNebula exhibited a poor disk
throughput, particularly in write and rewrite oper‐
ations. OpenStack outperformed the competition in
this aspect, and additionally, the results of instances
created in OpenStack showed less variability.

Figure 5. OpenStack Dashboard

Furthermore, in memory tests, OpenStack demon‐
strated its superiority over competitors. Considering
the often‐encountered poor performance of instances
created in OpenNebula and the fact that OpenStack
performedmost consistently in the tests conducted by
the authors, it was decided to use the OpenStack tool
for SDN tests in the cloud.
6.2. Installation and Integration of Tools

The ϐirst stepwas thepreparationof the laboratory
environment. Open‐source cloud computing infras‐
tructure software was installed on a server operating
under the control of Ubuntu Server 22.04.3. This soft‐
ware was OpenStack 2024.1 Caracal in the developer
version. After a successful installation, basic adminis‐
trative tasks were carried out, such as adding images
with Linux operating systems to the cloud.

Thanks to these actions, we had a preliminary
cloud environment ready. To conduct tests, creating a
virtual network within the cloud project and deploy‐
ing instances in it was only necessary. The testing
utilized the iperf3 software, an open‐source tool com‐
monly used for network testing (bandwidth measure‐
ment) [6].

After completing the initial part of the tests (as
discussed in thenext section), theOpenDaylightBoron
software was installed and integrated with the Open‐
Stack cloud to compare the results of tests between the
‘pure’ cloud andwhen our cloud is integratedwith the
SDN platform.
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Figure 6. Iperf3 tool

6.3. Tests without SDN

Initially, bandwidth was measured using the iperf
tool in the cloud environment (without SDN) for
10 seconds. Subsequently, additional measurements
were conducted for 20‐second intervals. In the ϐirst
case, the sender and receiver’s average bitrate was
146 Mbits/sec and 145 Mbits/sec, respectively. These
numbers were signiϐicantly better during the ini‐
tial 20‐second measurement, as the averaged bitrate
results indicated a throughput of 4 Mbits/sec higher
for both the sender and receiver. However, the sec‐
ond measurement with a 20‐second interval yielded
decidedly poorer results. A similar situation occurred
in the case ofmeasurementswith SDN, but that will be
discussed in the later part of the article.

The second part of the cloud environment test
without SDN involved conducting analogous tests
exclusively for the UDP protocol. Two tests, each last‐
ing 20 seconds, were carried out, revealing differences
in the delivery time of individual packets averaging
4.773 and 4.757 milliseconds.
6.4. Tests with SDN

To perform this part of the experiment, installing
and integrating OpenDaylight with the cloud was nec‐
essary. After a successful deployment, tests were con‐
ducted using the same methodology, but this time
in an SDN environment. The initial 10‐second test
already demonstrated the superiority of the SDN
environment, showing an increase in bitrate by 6
Mbits/sec. In the subsequent two tests with a 20‐
second interval, the bitrate increase hovered around
15 Mbits/sec.

To conclude the experiment, verifying the results
of the UDP protocol was essential. Here, too, the
advantage of SDN were evident, with lower jitter val‐
ues compared to the non‐SDN environment.

7. Comparison of the Results
Better results were consistently achieved for

OpenStack integrated with OpenDaylight in every test
case—regardless of the protocol type, with 10‐second
and 20‐second intervals. In the case of a 10‐second
interval, SDN‐based results were over 4% superior
compared to the environment without OpenDaylight.

Table 3. Transfer and throughput measurements for a
cloud network without SDN

Type Interval Total Transfer ABR
sender (0 ‐ 10 sec) 175 MBytes 146 Mbps
receiver (0 ‐ 10 sec) 174 MBytes 146 Mbps
sender (0 ‐ 20 sec) 357 MBytes 150 Mbps
receiver (0 ‐ 20 sec) 357 MBytes 149 Mbps
sender (0 ‐ 20 sec) 298 MBytes 121 Mbps
receiver (0 ‐ 20 sec) 298 MBytes 120 Mbps

Table 4. Transfer and throughput measurements for a
cloud network with SDN

Type Interval Total Transfer ABR
sender (0 ‐ 10 sec) 181 MBytes 152 Mbps
receiver (0 ‐ 10 sec) 181 MBytes 151 Mbps
sender (0 ‐ 20 sec) 393 MBytes 165 Mbps
receiver (0 ‐ 20 sec) 393 MBytes 164 Mbps
sender (0 ‐ 20 sec) 325 MBytes 136 Mbps
receiver (0 ‐ 20 sec) 324 MBytes 136 Mbps

Figure 7. Comparison of the best transfer results
obtained for an environment without and with SDN

For 20‐second intervals in the traditional envi‐
ronment, the average bitrate for both sender and
receiver hovered around 150 Mbits/sec for the ϐirst
and approximately 120 Mbits/sec for the second tests
(see: Table 3).

In the ϐirst test scenario for theOpenStack environ‐
ment with integrated SDN, results were obtained with
a bitrate level of 152 Mbits/sec. As mentioned earlier,
this is over 4% better than in the case of a traditional
cloud environment.

Tests for 20‐second intervals also showed that
OpenStack with integrated SDN is more efϐicient and
optimal. In the ϐirst test of the second test scenario, an
average bitrate result of 165 Mbits/sec was achieved
(an increase of 10% compared to the traditional envi‐
ronment).

Another test once again demonstrated the advan‐
tage of the SDN environment, where a bitrate increase
of over 13% was recorded compared to standard
OpenStack (see: Table 4).
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Table 5. Latency and throughput measurements for UDP
in a non‐SDN environment

Type Interval ABR Jitter
sender (0 ‐ 20 sec) 1.05 Mbps 0.000 ms
receiver (0 ‐ 20 sec) 1.05 Mbps 4.757 ms
sender (0 ‐ 20 sec) 1.05 Mbps 0.000 ms
receiver (0 ‐ 20 sec) 1.05 Mbps 4.506 ms

7.1. Tests for the UDP Protocol

The ϐinal element of the experiment involved con‐
ducting tests for the UDP protocol. Tests using the
iperf3 tool in UDP mode help identify network delays
and packet loss and are extremely valuable for mea‐
suring bandwidth. Such information is beneϐicial, for
example, when providing services related to real‐time
streaming. In UDP mode, the OpenStack environment
with integrated OpenDaylight performed better. In
both test cases, jitter (a measure of the temporal vari‐
ability of delay betweenpackets)was lower in the SDN
cloud environment than in the case of the traditional
environment. This indicates that OpenStack with inte‐
grated SDN allows for more stable data transmission
in the network.

Table 6. Latency and throughput measurements for UDP
in a non‐SDN environment

Type Interval ABR Jitter
sender (0 ‐ 20 sec) 1.05 Mbps 0.000 ms
receiver (0 ‐ 20 sec) 1.05 Mbps 4.052 ms
sender (0 ‐ 20 sec) 1.05 Mbps 0.000 ms
receiver (0 ‐ 20 sec) 1.05 Mbps 3.769 ms

8. Conclusion
Currently, we are witnessing continuous growth in

cloud computing. However, this extends beyond giants
like AWS, Azure, or Google Cloud Platform. The same
applies to open source projects, which are developing
daily with the support of numerous IT enthusiasts
and well‐known companies. Currently, for our own
needsor even for theneedsof our organization,we can
create our cloud using cloud computing tools such as
OpenStack, OpenNebula, Apache CloudStack, or Euca‐
lyptus. Our cloud gives usmore customization options
and control over its operation.

Additionally, we can inϐluence its performance
improvement thanks to various additional mecha‐
nisms. This paper demonstrates the beneϐits and pos‐
sibilities gained through Software‐Deϐined Network‐
ing (SDN) in the OpenStack cloud environment. We
can enhance network performance, streamline the
management process, and signiϐicantly elevate secu‐
rity through integration. SDN can dynamically con‐
trol trafϐic, contributing to the optimization of data
ϐlow and minimizing delays. The beneϐits of SDN in
the cloud environment were observed through exper‐
iments conducted.

It is worth considering how these results will
translate in the case of a vast and extensively devel‐
oped cloud infrastructure. SDN is additionally scalable
and ϐlexible, allowing for dynamicmanagement of net‐
work resources. Thanks to a centralized approach, it
facilitates resource management from a single point.
The centralized approach is also an additional advan‐
tage in terms of security, making it easier to ensure
consistency in network security, which cannot be said
for traditional networks, as mentioned at the begin‐
ning of the study. With the constant development and
popularity of cloud computing, SDN will continue to
evolve as the characteristics of this solution are tai‐
lored to such large‐scale projects.
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