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Abstract:
In data mining, one of the most studied problems is out‐
lier detection, which involves identifying “unusual” data
points within a dataset suspected to be generated by a
different mechanism than the rest of the dataset. Outlier
detection has applications in discovering novel informa‐
tion, detecting bank fraud, identifying system intrusions,
and others. However, handling large volumes of data,
known as big data, poses a challenge to outlier detection
algorithms because the resources of a single computer
may not be sufficient to achieve efficient performance.
Furthermore, datasets are often stored in distributed
environments.

The goal of this work is to develop a new distributed
outlier detection algorithm based on the solution of the
support vector data description using the alternating
direction method of multipliers. Mathematical optimiza‐
tion methods and Python language libraries are mainly
used for the implementation. As a result, the design
and distributed implementation of the proposed algo‐
rithm are achieved, which are validated using several test
datasets, yielding satisfactory and competitive results
compared to existing methods.

Keywords: outlier detection, big data, method of multi‐
pliers

1. Introduction
Outlier detection is one of the most studied prob‐

lems in data mining, and involves the identiϐication of
erroneous or “unusual” data points within a dataset.
Outlier detection (OD) ϐinds applications in discovery
of novel information, bank frauds, system intrusions
[12,14], as well as in data cleaning for machine learn‐
ing models that are sensitive to the presence of out‐
liers [28]. Formally, outlier detection can be deϐined
as the problem of ϐinding patterns in the data with
unexpected behavior [7]. Outliers are often referred
to as anomalies, exceptions, discordant observations,
and various other similar terms [3,21].

Outlier detection is an example of a problem that
can be solved using a class of classiϐiers known as
one‐class classiϐiers (OCC), a term proposed by Moya
[18]. It solves theproblemof ϐinding theboundary that
encompasses an entire class, given a dataset that could
be contaminated with a small amount of anomalous
data.

Tax and Duin [25] describe an OCC called Support
Vector Data Description (SVDD). It aims to ϐind the
hypersphere with the minimum radius that encloses
most data points in a dataset. The data points inside
the hypersphere are considered to belong to the target
class, while those outside are considered anomalous.

Currently, handling large volumes of data, known
as big data, represents a challenge for outlier detec‐
tion algorithms. The resources of a single computer
may not be sufϐicient to achieve efϐicient performance
for a particular algorithm. Centralized algorithms
are becoming less competitive in meeting the time
demands of modern applications. Furthermore, due
to the increasing sizes of datasets, they are frequently
stored in distributed environments [3].

The Alternating Direction Method of Multipliers
(ADMM) belongs to the category of distributed opti‐
mization and is suitable for solving many machine
learning problems [1, 4], especially those that can be
formulated or transformed into convex optimization
problems [5].

Based on these elements, themain objective of this
research is to develop a distributed outlier detection
algorithm based on solving the SVDD problem using
ADMM. This research aims to contribute to outlier
detection in large volumes of data by enabling dis‐
tributed processing. Moreover, the proposed method
does not require centralized data,making it applicable
to distributed datasets.

2. Concepts and Basic Notation
2.1. ADMM

ADMM is a decomposition‐coordination technique
in which solutions to small local subproblems are
coordinated to ϐind the solution to a larger global
problem [4]. Depending on the application, it is rel‐
atively simple to implement in distributed environ‐
ments, making it applicable to big data problems [4,
10].

ADMM solves problems of the form:

minimize 𝑓(𝑥) + 𝑔(𝑧) (1)
subject to: 𝐴𝑥 + 𝐵𝑧 = 𝑐

Where 𝑥 ∈ ℝ𝑛 , 𝑧 ∈ ℝ𝑚 , 𝐴 ∈ ℝ𝑝×𝑛 , 𝐵 ∈ ℝ𝑝×𝑚 , and
𝑐 ∈ ℝ𝑝. With 𝑓 and 𝑔 convex functions. The minimum
value of problem (1) would be:

𝑝∗ = min (𝑓(𝑥) + 𝑔(𝑧) | 𝐴𝑥 + 𝐵𝑧 = 𝑐)
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Where min refers to the minimum. The (augmented)
Lagrangian for this problem would be:

𝐿𝑝(𝑥, 𝑧, 𝑦) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑦𝑇(𝐴𝑥 + 𝐵𝑧 − 𝑐)

+𝜌
2‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖22

And the solution by ADMM consists of the iterations:

𝑥𝑘+1 ∶= argmin
𝑥

𝐿𝑝(𝑥, 𝑧𝑘 , 𝑦𝑘) (2)

𝑧𝑘+1 ∶= argmin
𝑧

𝐿𝑝(𝑥𝑘+1, 𝑧, 𝑦𝑘) (3)

𝑦𝑘+1 ∶= 𝑦𝑘 + 𝜌(𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐) (4)

with 𝜌 > 0. As can be seen, the variables 𝑥 and 𝑧 are
updated alternately, hence the name of the algorithm.
The variable 𝑦 is called the dual variable.

ADMM can be written in a different, often more
convenient form, known as the scaled form:

𝑥𝑘+1 ∶= argmin
𝑥

(𝑓(𝑥) + 𝜌
2‖𝐴𝑥 + 𝐵𝑧𝑘 − 𝑐 + 𝑢𝑘‖22)

(5)

𝑧𝑘+1 ∶= argmin
𝑧

(𝑔(𝑧) + 𝜌
2‖𝐴𝑥

𝑘+1 + 𝐵𝑧 − 𝑐 + 𝑢𝑘‖22)

(6)
𝑢𝑘+1 ∶= 𝑢𝑘 + 𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐 (7)

where 𝑢 = 1
𝜌𝑦. The dual variable is scaled.

Consensus problems are part of the ϐield of
distributed optimization and have historically been
related to the ADMM. The consensus optimization
problem consists of a single global variable with the
objective and constraint terms divided into N parts:

minimize
𝑁

෍
𝑖=1

𝑓𝑖(𝑥𝑖) (8)

subject to: 𝑥𝑖 − 𝑧 = 0 𝑖 = 1...𝑁

This is called the global consensus problem.
A common variation of the problem (8) is the

introduction of a regularization term in the objective
function 𝑔, which represents a regularization term:

minimize
𝑁

෍
𝑖=1

𝑓𝑖(𝑥𝑖) + 𝑔(𝑧) (9)

subject to: 𝑥𝑖 − 𝑧 = 0 𝑖 = 1...𝑁

The solution byADMMtoproblem (9)would be (in the
scaled form):

𝑥𝑘+1𝑖 ∶= argmin
𝑥𝑖

(𝑓𝑖(𝑥𝑖) +
𝜌
2‖𝑥𝑖 − 𝑧𝑘 + 𝑢𝑘𝑖 ‖22) (10)

𝑧𝑘+1 ∶= argmin
𝑧

(𝑔(𝑧) + 𝑁𝜌
2 ‖𝑧 − �̄�𝑘+1 − �̄�𝑘‖22)

(11)
𝑢𝑘+1𝑖 ∶= 𝑢𝑘𝑖 + 𝑥𝑘+1𝑖 − 𝑧𝑘+1 (12)

where 𝑥𝑖 are the local primal variables at each node,𝑢𝑖
are the local dual variables, 𝑧 is the consensus (global)

variable, and �̄� and �̄� are the averages of the primal
and dual variables, respectively.

For ADMMwith consensus, the residuals are in the
form of vectors:

𝑟𝑘 = (𝑥𝑘1 − 𝑧𝑘 , ..., 𝑥𝑘𝑁 − 𝑧𝑘),
𝑠𝑘 = −𝜌(𝑧𝑘 − 𝑧𝑘−1, ..., 𝑧𝑘 − 𝑧𝑘−1)

whose quadratic norms are:

‖𝑟𝑘‖22 =
𝑁

෍
𝑖=1

‖𝑥𝑘𝑖 − 𝑧𝑘‖22, ‖𝑠𝑘‖22 = 𝑁𝜌2‖𝑧𝑘 − 𝑧𝑘−1‖22

2.2. SVDD

SVDD, proposed in [25], is an unsupervised learn‐
ing method that is very useful for data description
and anomaly detection. To describe the dataset, this
model ϐinds a hypersphere that encloses most of the
data, minimizing the possibility of accepting anoma‐
lous data within it.

SVDD is formulated as an optimization problem in
the following way: Given a set of points 𝑥𝑖 ∈ ℝ𝑑 , 𝑖 =
1...𝑛:

minimize
𝑅,𝑎,𝜉𝑖

𝑅2 + 𝐶
𝑛

෍
𝑖=1

𝜉𝑖 (13)

subject to: ‖𝑥𝑖 − 𝑎‖2 ≤ 𝑅2 + 𝜉𝑖 , 𝑖 = 1...𝑛
𝜉𝑖 ≥ 0, 𝑖 = 1...𝑛

Where 𝑎 is the center of the hypersphere, 𝑅 is the
radius, 𝐶 is a control parameter, and 𝜉𝑖 are slack vari‐
ables. The distance from 𝑥𝑖 to the center need not be
less than or equal to 𝑅2, and these large distances
are penalized with margin errors 𝜉𝑖 for each 𝑥𝑖 . The
parameter 𝐶 controls the trade‐off between the vol‐
ume of the hypersphere and the errors, i.e., it controls
the number of points included in the hypersphere.

Another approach to the data description problem
can be found in [23,24]. It is based on ϐinding a hyper‐
plane that separates the dataset from the origin with
themaximumpossiblemargin. The formulationwould
be:

minimize
𝑤,𝜌,𝜉𝑖

1
2‖𝑤‖

2 − 𝜌 + 1
𝑣𝑁

𝑁

෍
𝑖=1

𝜉𝑖 (14)

subject to: 𝑤 ⋅ 𝑥𝑖 ≥ 𝜌 − 𝜉𝑖 ∀𝑖 𝜉𝑖 ≥ 0

Where 𝑤 is the weight vector of the hyperplane, 𝜌
is the separation margin, 𝑥𝑖 are the instances of the
dataset,𝑁 is the number of instances, 𝜉𝑖 are slack vari‐
ables to account for possible errors, and 𝑣 ∈ (0, 1) is a
regularization parameter that indicates the fraction of
data points that should be separated (equivalent to the
𝐶 parameter). Because of this parameter, this method
is known as 𝑣‐SVC.

Although the hyperplane is not a closed boundary,
it provides solutions comparable to the original SVDD
problem when the data is preprocessed to unit norm
[25].
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3. Related Work
3.1. Convex Optimization in OCC and Outlier Detection

Convex analysis methods have found increasing
application in outlier detection and related areas. OCC
can beneϐit from the robust algebraic and geomet‐
ric approximations provided by convex analysis and
optimization, allowing efϐicient solution computation
through mathematical optimization [26].

Kernel Mean Matching (KMM) [13] is a method
that assists in outlier detection by checking whether
the training and test sets follow the same distribution.
Its solution is formulated as a quadratic programming
problem. A similar task to KMM can be performed
with Least Square Importance Fitting (LSIF) [15]. In
this case, it is also a quadratic programming problem
directly related to the least squares problem.

The convex hull is one of the most commonly used
convexanalyses approaches inOD.This approachaims
to ϐind the smallest convex set that encloses a given
set of points. Due to its inherent problem formulation,
the convex hull has been used in OCC as a method for
outlier detection [2,6].

In [8], the convex modeling of the SVDD prob‐
lem and its solution using Lagrange multipliers are
analyzed. In addition, [23] presents an OCC based
on support vector machines, where the model corre‐
sponds to a quadratic programming problem related
to SVDD. These approaches are of interest in the
present research.

In the ϐield of convex optimization, many works
focus on decomposition methods and decentralized
algorithms [4,11,17], which naturally lend themselves
to be approached from the perspective of distributed
optimization algorithms.
3.2. Distributed Optimization for Outlier Detection

When working with OD in big data, valuable infor‐
mation can be discovered and it is applicable in
various domains. A fundamental challenge of OD in
distributed systems is to minimize communication
between nodes while maintaining the effectiveness
of an algorithm [3]. In [14], an algorithm for OD
based on data neighborhood is developed with a dis‐
tributed and input stream focused approach. The algo‐
rithm is based on LOCI (Local Correlation Integral),
which allows the detection of contextual outliers, i.e.,
instances that are considered outliers for a particular
subset of the dataset. This work highlights the power
of parallel processing for OD with input data streams.

In [22], an implementation for real‐time OD using
thePySpark variant of Spark forPython is proposed. In
this work, the training data is stored in the cloud and
a cluster‐based solution is presented. Instances out‐
side the formed clusters are considered outliers. The
approach also includes a scheduler that periodically
re‐trains the algorithm, allowing for re‐evaluation of
decisions previously made on instances. Considering
that distributed OD is a relatively unexplored area,
[28] proposes Sparx, a new algorithm based on the
xStream algorithm.

xStream was originally designed for a single pro‐
cessor, but this proposes a Map‐Reduce design using
Apache Spark in Python. The environment used does
not exchange information between nodes, and the
data is decentralized.

In [29, 30], the Python library PyOD is proposed,
which provides numerous OD algorithms. The library
analyzes various characteristics of these algorithms,
including their suitability for multi‐core processing.
PyOD aims to provide a comprehensive set of OD tech‐
niques, making it easier for researchers and practi‐
tioners to experiment with and apply different outlier
detection algorithms in Python.

4. Solving the SVDD Problem with Consensus‐
Based ADMM
Based on the analysis discussed in 2.1 and 2.2,

the following solution to the SVDD problem using
consensus‐based ADMM is proposed:

𝑤𝑘+1
𝑖 ∶= argmin

𝑤𝑖

𝑁𝑖

෍
𝑗=1

ൣ𝜌𝑘𝑖 −𝑤𝑖𝑥𝑖𝑗൧+ (15)

+ 𝛼1
2 ‖𝑤𝑖 −𝑤𝑘 + 𝑢𝑘𝑖 ‖2

𝜌𝑘+1𝑖 ∶= argmin
𝜌𝑖

𝑁𝑖

෍
𝑗=1

ൣ𝜌𝑖 −𝑤𝑘+1
𝑖 𝑥𝑖𝑗൧+ (16)

+ 𝛼2
2 ‖𝜌𝑖 − 𝜌𝑘 + 𝑣𝑘𝑖 ‖2

𝑤𝑘+1 ∶= argmin
𝑤

1
2𝜆‖𝑤‖

2 (17)

+ 𝐽𝛼1
2 ‖𝑤 − �̄�𝑘+1 − �̄�𝑘‖2

𝜌𝑘+1 ∶= argmin
𝜌

− 𝜌
2𝜆 (18)

+ 𝐽𝛼2
2 ‖𝜌 − �̄�𝑘+1 − �̄�𝑘‖2

𝑢𝑘+1𝑖 ∶= 𝑢𝑘𝑖 +𝑤𝑘+1
𝑖 −𝑤𝑘+1 (19)

𝑣𝑘+1𝑖 ∶= 𝑣𝑘𝑖 + 𝜌𝑘+1𝑖 − 𝜌𝑘+1 (20)

In this case, 𝑖 = 1...𝐽, where 𝐽 is the number of nodes
and 𝑁𝑖 is the number of instances handled by node 𝑖.
The values of𝛼1 and𝛼2 are assumed to be greater than
0. The 𝜆 parameter acts as a penalty parameter.

4.1. Variable Updates

The minimizations are performed using gradients
(or subgradients if necessary) and would be as fol‐
lows:

𝑤𝑘+1
𝑖 = 𝑤𝑘 − 𝑢𝑘𝑖 +

1
𝛼1

𝑁

෍
𝑗=1

𝐼𝑤𝑖𝑥𝑖𝑗<𝜌𝑘𝑖
(𝑤𝑖)𝑥𝑖𝑗 (21)

where:

𝐼𝐴(𝑥) = ቊ 1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴
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𝜌𝑘+1𝑖 =

⎧
⎪

⎨
⎪
⎩

𝜌𝑘 − 𝑣𝑘𝑖 , 𝜌𝑘 − 𝑣𝑘𝑖 ≤ min(�⃗�)

𝜌𝑘 − 𝑣𝑘𝑖 −
𝑁
𝛼2
, 𝜌𝑘 − 𝑣𝑘𝑖 −

𝑁
𝛼2

> max(�⃗�)

𝜌𝑘 − 𝑣𝑘𝑖 −
𝑁𝑡
𝛼2
, otherwise

(22)

𝑤𝑘+1 = 𝐽𝛼1
1
𝜆 + 𝐽𝛼1

(�̄�𝑘+1 + �̄�𝑘) (23)

𝜌 = 1
2𝜆𝛼2𝐽

+ (�̄�𝑘+1 + �̄�𝑘) (24)

𝑢𝑘+1𝑖 ∶= 𝑢𝑘𝑖 +𝑤𝑘+1
𝑖 −𝑤𝑘+1 (25)

𝑣𝑘+1𝑖 ∶= 𝑣𝑘𝑖 + 𝜌𝑘+1𝑖 − 𝜌𝑘+1 (26)

Based on the proposed updates, the solution algo‐
rithm would be as shown in Algorithm 1:

Algorithm 1: Distributed SVDD using
Consensus‐based ADMM
Input: X, 𝜆, J, 𝛼1,𝛼2
Output:w,𝜌
/* Initialize variables for 𝑤 */

1 𝑤𝑖 = 0⃗,𝑤 = 0, 𝑢 = 0⃗
/* Initialize variables for 𝜌 */

2 𝜌𝑖 = 1⃗, 𝜌 = 1, 𝑣 = 1⃗
3 while stop do

/* Update 𝑤𝑖 at each node */

4 𝑤𝑘+1
𝑖 = argmin 𝑤𝑖

∑𝑁𝑖
𝑗=1 ൣ𝜌𝑘𝑖 −𝑤𝑖𝑥𝑖𝑗൧+ +𝛼1

2 ‖𝑤𝑖 −𝑤𝑘 + 𝑢𝑘𝑖 ‖22
5

/* Update 𝜌𝑖 at each node */

6 𝜌𝑘+1𝑖 = argmin 𝜌𝑖 ∑
𝑁𝑖
𝑗=1 ൣ𝜌𝑖 −𝑤𝑘+1

𝑖 𝑥𝑖𝑗൧+ +
𝛼2
2 ൫𝜌𝑖 − 𝜌𝑘 + 𝑣𝑘𝑖 ൯

2

7

/* Update consensus variables */
8 Update𝑤 ; Update 𝜌 ;
9

/* Update dual variables */
10 𝑢𝑘+1𝑖 = 𝑢𝑘𝑖 +𝑤𝑘+1

𝑖 −𝑤𝑘+1

11 𝑣𝑘+1𝑖 = 𝑣𝑘𝑖 + 𝜌𝑘+1𝑖 − 𝜌𝑘+1
12

/* Update history, objective function,
dual and primal residuals, and check
termination criteria */

13 ;
14 Update 𝜖primal, 𝜖dual, 𝑟primal, 𝑟dual, and

objective function;
15 if stop then
16 break

The variable stop models the proposed stopping
conditions. The most general condition is the max‐
imum number of iterations, which ensures that the
algorithm stops.

It also checks whether the residuals do not exceed
a tolerance value that combines absolute and relative
variants. Finally, an early stopping criterion is intro‐
duced, where the algorithm is stopped if there is no
improvement of the best value obtained so far for a
given number of iterations.

Given the characteristics of consensus ADMM for
the distributed architecture, one node should be used
where the results are centralized and aggregated. The
ϐlow of the algorithm in each iteration would be to
update the parameters 𝑤𝑖 and 𝑏𝑖 at each node inde‐
pendently using its own dataset and the values of 𝑤,
𝑏 and the dual variables from the previous iteration.
Once the 𝑤𝑖 and 𝑏𝑖 values of each node have been
obtained, they are centralized and aggregated syn‐
chronously to give the𝑤 and 𝑏 of the current iteration.
Finally, the dual variables are updated. This workϐlow
was implemented using a map‐reduce methodology.

5. Results and Discussion
5.1. Datasets

To evaluate the performance of the algorithm, we
use ϐive datasets: three synthetic, and two real. These
datasets vary in the number of instances and dimen‐
sions. The synthetic datasets are generated based on
probability distributions in the plane, which facilitates
the construction of graphs to understand the behavior
of the algorithm. The datasets are distributed equi‐
tably among the processing nodes.

Table 1 brieϐly describes the ϐive datasets, the
instances row deϐines the total number of elements
in each dataset, while the outliers row deϐines how
many of those instances are anomalous. The three
synthetic sets corresponding to Experiments 1, 2 and
3 are constructed in the same way, the instances
are (x,y) coordinates where most of the data is uni‐
formly distributed around the points (‐2,‐2) and (2,2)
with radius 1. The rest of the instances are normally
distributed around the points (‐2,‐2) and (2,2) with
radius 1. The remaining instances are normally dis‐
tributed in the rectangle deϐined from (‐4,‐4) to (4,4)
and are considered anomalous. Experiment 4 is per‐
formed on the Glass dataset, which has nine contin‐
uous features related to the concentrations of metals
in the material. It is initially a classiϐication problem
with six classes, but class number 6 is in the minority
and instances belonging to this class are considered
anomalous.1 Experiment 5 is carried out with a real
dataset related to behavior reports for a physical sys‐
tem: Statlog (shuttle). For the experiments, a version
is taken in which the main task is to distinguish the
reports that are considered anomalous from those
that are not.2

Preprocess The main step in data preprocessing is
the use of the Nystroem approximation [19, 27]. This
step not only helps to reduce the dimensionality of
the kernel matrix, but also allows for modeling the
nonlinearity of the data. The kernel used is the Radial
Basis Function (RBF) kernel [20].
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Table 1. Experimental Results

Parameters Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Instances 420 2020 300500 214 46464
Dimension 2 2 2 9 9
Type Synthetic Synthetic Synthetic Real Real
Outliers 20 20 500 6 878
Nodes 4 8 2 4 4
AUC‐ROC OCSVM 0.95 0.92 0.95 0.76 0.83
AUC‐ROC SGD‐OC 0.94 0.90 0.96 0.76 0.83
AUC‐ROC ADMM‐OC 0.95 0.91 0.95 0.76 0.81

In the experiments conducted, it was also found
to be effective to scale the values before applying the
kernel. For this purpose, the Robust Scaler from scikit‐
learn is used, which is more effective than standard
scaling because the Robust Scaler is not sensitive to
the presence of outliers [19].

Other common preprocessing steps can also apply
if necessary, such as data type transformation and
missing value handling [16].

5.2. Experimental Setup

The same methodology was used for all exper‐
iments: A labeled dataset is taken, with one class
representing the outliers. The labels are stored and
removed from the dataset. The classiϐier is trained on
the unlabeled data, then used to classify the data, and
the performance is evaluated using the original stored
labels.

This process is performed for three One Class Sup‐
port VectorMachine classiϐiers, two ofwhich are avail‐
able in the scikit‐learn library: OCSVM and SGD‐OC.
The third classiϐier is the oneproposed in this research
(called ADMM‐oc).

Another important aspect is that for the ADMM‐
oc and SGD‐oc methods the data shown in the AUC‐
ROC in Table 1 are the result of the average of 10
runs in the ϐirst four experiments and 5 runs in the
ϐifth experiment. This process is done because both
methods are stochastic.

5.3. Metrics

The OD problem can be viewed as a two‐class
classiϐication problem, where one class represents the
outliers and the other class represents the “normal”
instances [21]. Even methods that return a score or
degree can be reduced to a two‐class problem by set‐
ting a threshold for the data, above which they are
considered anomalous [7]. Therefore, scoring metrics
for binary classiϐication problems are valid. An impor‐
tant consideration is the typical class imbalance in
such problems, which may cause certain metrics to be
unrepresentative of the quality of a given algorithm.
Therefore, the AUC‐ROCmetric is evaluated because it
is not sensitive to imbalanced data [9,12].

5.4. Validation

Table 1 presents the results of the experiments,
with a description of the datasets and some parame‐
ters used for each experiment. It can be observed that

Figure 1. Convergence Analysis

Figure 2. Residuals and Tolerances

the AUC‐ROC values remain similar to the other two
methods compared, regardless of the variation in the
datasets.

During Experiment 2, studies were conducted
to verify the algorithm’s convergence. The results
showed that the ADMM‐OC algorithm achieves good
convergence within a maximum of 20 iterations, as
can be seen in Figures 1 and 2.

Considering the two‐dimensionality of the dataset
used in Experiment 3, a comparison of the contour
plots of the classiϐiers is proposed in Figure 3. As can
be observed, the contour plots are almost identical,
which supports the similar AUC‐ROC values obtained.
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Figure 3. Countour Lines

Visually the outermost contour line would repre‐
sent the boundary between anomalous and normal
instances.

Based on the experimental study, it can be con‐
cluded that the algorithm maintains good effective‐
ness compared to other similar methods. The inϐlu‐
ence of data preprocessing, particularly the Nys‐
troem approximation, on the performance of the algo‐
rithm was observed. For two‐dimensional datasets,
the results were evaluated graphically, visually con‐
ϐirming the effectiveness values obtained. Finally, a
detailed analysis of the algorithm’s iterations allowed
veriϐication of aspects related to convergence and the
consensus process.

6. Conclusion
Outlier detection is a fundamental area of data

mining. It not only contributes to data cleaning, but
also to the discovery of new knowledge. However, its
application to large volumes of data remains a chal‐
lenge today. The SVDD problem is useful for outlier
detection and modeling it as an optimization prob‐
lem allows approaching it using iterative methods
such as ADMM. The consensus variant of ADMM was
used to model the solution of the SVDD problem. The
proposed algorithm was implemented. The form of
the consensusmethod allowed this implementation to
have a distributed approach. To validate the model, a
series of experimentswere carried out using synthetic
and real datasets with different numbers of instances
and dimensions,which veriϐied the competitiveness of
the proposed algorithm with respect to other exist‐
ing ones, obtaining AUC‐ROC values in an acceptable
range. The graphical analysis of the contour lines
in the two‐dimensional sets provided clarity to the
results obtained.

As future work, it is considered to extend the com‐
parison of the proposed algorithm with other dis‐
tributed algorithms for OD. It is also proposed to vali‐
date the algorithm on non‐equal distribution datasets.

Notes
1Original: UCI Repositry: https://archive.ics.uci.edu/static/pub

lic/42/glass+identification.zip, Outlier Approach: https://odds.cs.
stonybrook.edu/glass‐data/.

2Original: UCI Repository: https://archive.ics.uci.edu/static/p
ublic/148/statlog+shuttle.zip, Version Used: https://dataverse.ha
rvard.edu/api/access/datafile/2711919?format=original.
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