
Open Access. © 2025 Mariusz Jacewicz et al., published by Sciendo. This work is licensed under the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 License

VOLUME 19, N∘ 2 2025
Journal of Automation, Mobile Robotics and Intelligent Systems

MODEL‐BASED DEVELOPMENT OF AUTOPILOT FOR A GASODYNAMICALLY
CONTROLLED HIGH‐SPEED UNMANNED AERIAL VEHICLE

MODEL‐BASED DEVELOPMENT OF AUTOPILOT FOR A GASODYNAMICALLY
CONTROLLED HIGH‐SPEED UNMANNED AERIAL VEHICLE

MODEL‐BASED DEVELOPMENT OF AUTOPILOT FOR A GASODYNAMICALLY
CONTROLLED HIGH‐SPEED UNMANNED AERIAL VEHICLE

MODEL‐BASED DEVELOPMENT OF AUTOPILOT FOR A GASODYNAMICALLY
CONTROLLED HIGH‐SPEED UNMANNED AERIAL VEHICLE

Submitted: 17th February 2024; accepted: 7th November 2024

Mariusz Jacewicz, Dariusz Miedziński, Grzegorz Chmaj, Robert Głębocki

DOI: 10.14313/jamris‐2025‐010

Abstract:
In recent years, model‐based design and automatic code
generation have gained popularity in various applica‐
tions. However, using this approach in some specialized
safety‐critical applications is still challenging because the
code must fulfill rigorous requirements. In this paper,
the methodology of development of the software autopi‐
lot for the guided High‐Speed Unmanned Aerial Vehicle
(HSUAV) is presented in detail. The platform is actuated
only with 32 solid propellant lateral motors, whichmakes
the control task challenging. MATLAB and Simulink were
used to develop the detailed simulation of the vehicle,
together with the control software. A Model‐in‐the‐Loop
testing was evaluated to achieve an appropriate autopi‐
lot response. Embedded Coder was applied to generate
production‐ready C code from the model. A custom test
framework was created to accelerate the design process.
The numerical equivalency of the Simulink model and C
code was investigated extensively using Software‐in‐the‐
Loop and Processor‐in‐the‐Loop simulations. A developed
control algorithm was implemented on real hardware
with an ARM Cortex M4 microcontroller. The integrated
prototype of the control system was successfully tested
in laboratory conditions by Hardware‐in‐the‐Loop sim‐
ulation. The scientific significance of this paper lies in
a comprehensive description of the methodology that
might be used by other researchers.

Keywords:model‐based design, automatic code genera‐
tion, Embedded Coder

1. Introduction
Model‐based design (MBD) is gaining popularity

in various applications, such as medical, industrial,
aerospace, and automotive. This methodology is also
sometimes used to develop control systems for guided
missiles. However, in the existing literature, ϐinding
a detailed and comprehensive description of the pro‐
cess is challenging. Such data are often classiϐied due
to security reasons. Moreover, the development of
control systems for high‐speed objects is very costly
and restricted by military institutions. A lot of the
existing systems are based on legacy solutions that
were developed several years ago. Also, testing the
developed system requires specialized test ranges
because failure during real ϐlight might have catas‐
trophic consequences and be very dangerous.

When a malfunction occurs, the object can hit
the unintended target accidentally. For this reason,
using models plays a critical role in preparing ϐlight
tests. The onboard software must be developed cost‐
efϐiciently and ensure a ϐinal high‐quality product.
There exists a signiϐicant research gap in publications
relating to the topic of automatic code generation
(ACG) in the ϐield of guided HSUAVs. The overall pro‐
cessworkϐlow is generallywell‐known, but fromexist‐
ing available literature, it is hard to conclude about the
details (for example, settings of the code generator or
veriϐication method).

Alpaslan [3] analyzed the challenges with the
development ofweapon software. The autopilotmight
be considered as a safety‐critical system operating in
real‐time. The development of such a system is often
more complicated than that of commercial products.
Also, information security must be considered. Today,
a lot of weapon functionalities are included in the soft‐
ware. As a result, requirements canbepretty similar to
those in the space industry.

The traditional process of software development
was manual coding [7]. However, such an approach
is time‐consuming. Up to this time, many papers on
code generation have appeared in the literature. A
review of recent studies on automated code gener‐
ation was presented by Kshirsagar et al. [39]. ACG
was used for the aerospace projects. Maroli et al. [46]
adopted code generation for the motor controller for
NASA’s X‐57 Maxwell aircraft. They also explained the
role of several analysis tools available in MATLAB to
ensure that the created code is bug‐free. This tech‐
niquewas applied to develop the software for the fault
protection system in the Deep Space 1 mission [47].
MBD and Simulink were successfully used to create
the Guidance, Navigation, and Control (GNC) software
for the Orion project, and NASA published a detailed
description of the methodology in [31, 64]. Fraticelli
[23], presented the example of software development
for an Attitude Determination Control System (ADCS)
of a satellite and investigated the numerical equiva‐
lencybetween themodel andC codeoutput. Carpenter
[10] also reported using ACG to obtain the ready‐to‐
use software for nanosatellite in the context of ADCS.
Yahyaabadi et al. [71] studied the feasibility of using
auto‐code generators in future space missions.

8

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Arm et al. [5] discussed the code generation prob‐
lem for safety‐critical applications and presented an
example of a complete workϐlow for the ARM Cor‐
tex R hardware target. Erkinnen [17] also addressed
the topic of software development by using ACG
for such systems. Several years ago, Schwarz [59]
mentioned that code generation is not often applied
for safety‐critical systems because such applications
should obey strict requirements. However, up to now,
auto‐coding using automatic code generators is still
not a widely accepted method of software creation in
safety‐critical applications. The main reason behind
this is the lack of certiϐication and qualiϐication of the
generators [15, 22, 62]. Moreover, many of the exist‐
ing aerospace and defense systems were developed
a couple of years ago, and there is a problem with
adequately integrating the legacy codes with modern
software development tools.

Autogenerated code from Simulink can have bugs
thatmight have fatal consequences [34]. The resulting
code must work in the same manner as the original
model of the system. The problem of numerical equiv‐
alency between the model and autogenerated code
was addressed by several researchers [6]. Lambersky
[40] presented the development of the control algo‐
rithm for a legged robot and compared the results
from the simulation and target platform.

Many examples of using ACG were reported for
relatively simple systems that do not have to meet
strict requirements [41, 48, 52, 53, 60]. For instance,
Hyl and Wagnerová [28] presented the case of the
controller development process for the climate unit
laboratory stand. Otava [55] showed motor control
development using Simulink Embedded Coder and
veriϐied the results experimentally. Fakih and Warsitz
[21] reported the code generation process for two
simple user case studies and compared the results
of MIL and SIL simulations. Krizan et al. [38] pre‐
sented a detailed description of a model‐based design
for control of a direct current brushless motor. Also,
Wu [69] reported using MATLAB built‐in tools from
the Coder family for controller design for an electric
motor using TI FI28379D hardware. Lixin and Liwen
[11] presented the case of code generation for an
autonomous underwater robot.

Existing works are related to using MATLAB tools
in the MBD process. It must be mentioned that a set
of other code generators exists. SCADE environment
with a qualiϐiable KCG Code Generator is used for the
development of avionics software [67]. In the auto‐
motive industry, the TargetLink generator reached
signiϐicant popularity. Ajwad [2] compared the per‐
formance of Embedded Coder and TargetLink. Also,
Scilab‐Scicos and GeneAuto were proposed as open‐
source solutions [37, 58, 66]. Jacobitz and Xiaobo
proposed [32, 33] LoRra generator that can be used
to translate Scilab/Xcos models into usable C code.
Also, a group of research papers proposes customized,
much less popular generators other than widely used
(both commercial and open‐source) solutions.

For example, Yu et al. [72] designed a custom
generator named Mercury and compared the per‐
formance with Simulink Embedded Coder. Bourbouh
et al. [8] proposed a framework named CoCoSim that
can be used to analyze and verify the code generated
from Simulink models. Some recent studies concen‐
trate on generating parallelized code from Simulink
block diagrams [70].

Several trials by many individual researchers and
various organizations were performed to standardize
the ϐlight‐ready production code generation process
from Simulink models. For example, Erkkinen [16]
described several available guidelines and best prac‐
tices for automatic code generation for ϐlight applica‐
tions to make it optimized and efϐicient. Some years
later, in [18], he also presented the use of a qual‐
iϐied veriϐication tool for the model‐based designs
for DO‐178B applications. Fraticelli [24] described a
set of valuable practices in generating C code from
the Simulink model. MathWorks Automotive Advisory
Board (MAAB) proposed a set of proper practices and
recommendations. Motor Industry Software Reliabil‐
ity Association (MISRA) initially created a set of C
standards only for automotive applications, but now
they are widely used in other branches of industry.
NASA has its standards and regulations (for exam‐
ple, NPR 7150.2, NASA‐STD‐8739.8, and NASA‐GB‐
8719.13). One of the most important contributions
and progress in that ϐield in the context of aerospace
applications is reports prepared by the Space AVionics
Open Interface aRchitecture (SAVOIR) working group
that can be used as guidelines in C code generation
from Simulink models [19,20].

In the ϐield of guided UAVs, the literature related
to MBD is relatively scarce. Among the detailed pub‐
lications, one might mention the work of Putro and
Septanto [57], who developed a real‐time test envi‐
ronment for evaluating the missile’s performance.
Craft [13, 14] presented the case of using automatic
code generation for the Long Range Land Attack
Projectile (LRLAP). Abdelaty [1] gave a comprehen‐
sive description of the autopilot development for the
anti‐tank round. Tancredi [65] described the overall
design methodology, and reported using code gen‐
eration by MBDA company but without describing a
particular case. Holliday [27] reported using MBD by
Thales company and presented several user cases,
however, without sufϐicient detail. Several authors
brieϐly described Hardware‐in‐the‐Loop simulators
for guided high‐speed objects [4, 36, 61, 76], but the
results are difϐicult to reproduce. Waxenegger [68]
presented a Hardware‐in‐the‐Loop testing methodol‐
ogy for a rocket propulsion control system.

Automatic code generation from the systemmodel
offers several advantages compared to the software’s
traditional manual coding for the control system. The
overall cost and time of the prototyping might be
reduced signiϐicantly [74]. As a result, auto coding can
reduce the overall effort compared to manual coding
[51].

9

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

The research might concentrate on testing vari‐
ous variants of the algorithm instead of implementing
low‐level language details [45,75]. The resulting code
has a clear and repeatable structure. This technique
also decreases the need for manual debugging, which
is often time‐consuming. Such methodology reduces
the probability of introducing human‐made mistakes
during manual coding (for example, in signs). Fur‐
thermore, the consecutive versions of the software
might be easily managed. The veriϐication and doc‐
umentation process could also be automated. Auto‐
matically generated code can be as fast or even faster
than handwritten code [9, 12, 44]. Using MBD, the
number of expensive and time‐consuming ϐlight trials
that must be performed to validate the control sys‐
tem can be reduced signiϐicantly. SIMULINK diagrams
are quite easy for managers and system engineers to
understand, so team collaboration is simpliϐied. On
the other hand, this methodology requires the staff to
havemultidisciplinary competencies (ϐlight dynamics,
modeling, electronics, etc.).

Themotivation for thepresented studywas strictly
practical. There was a need to develop a control
system prototype for the gasodynamically controlled
HSUAV in a short time. The most common actua‐
tion method is using movable aerodynamic ϐins or
thrust vectoring. Using multiple solid propellant lat‐
eral motors is much less prevalent.

Up to now, only a few existing solutions have used
this type of actuation. Such pulse thrusters (as only
actuators) were used on the M47 Dragon anti‐tank
and STRIXmortar rounds. Ukrainian Vilkha adopts 90
small pulse thrusters in the front of the fuselage, but
also embraces the aerodynamic movable ϐins used in
the last phase of ϐlight. Moreover, 180 lateral motors
are used on PAC‐3 MSE in the initial and terminal
phases of ϐlight (this platform also uses aerodynamic
control).

The main contribution of this study is the detailed
description of automatic C code generation from the
Simulinkmodel for the HSUAV autopilot. The original‐
ity of this research lies in the fact that the object is
actuatedonly by solid propellant lateralmotors,which
is not a standard solution. The control systems for
such a conϐiguration are not described in sufϐicient
detail. For a tactical‐grade system, the reliability of
the operation is a critical factor. The solution must
be carefully tested for various possible scenarios that
might appear in the actual ϐirings. The resulting code
cannot include unintended functionality affecting the
system’s operation. This research extends the results
presented in [30, 42]. The proposed approach might
be helpful for other researchers in the ϐield of external
ballistics. The article also includes a description of a
set of good code‐generating practices.

The structure of the paper is as follows. At ϐirst,
a description of the ϐlying platform is shown. Then,
a ϐlight simulation model of the HSUAV developed in
Simulink was presented. Next, the control algorithm
was described. Later, the code generation process was
explained.

The representative results were shown. The paper
ends with a discussion of the obtained results and a
summary of the main ϐindings. Finally, some further
possible research directions are suggested.

2. High‐Speed Unmanned Aerial Vehicle
Description
The diameter of the fuselage is 0.122 m and the

total length of the object is 2.1 m. At launch, the mass
is around 26 kg, andmoments of inertia are 0.13 kgm2

(longitudinal) and 10.2 kgm2 (transversal). The mass
of the propellant is 6 kg. The operation time of the
mainmotor is a littlemore than 2.8 s, and the available
thrust has a maximum value of about 8600 N. HSUAV
is aerodynamically stabilized by four trapezoidal ϐins
(there is no wrap‐around functionality). These stabi‐
lizers are canted, and as a result, they create a rolling
moment (the platform intentionally spins slowly dur‐
ing the ϐlight). The platform is equipped with 32 solid
propellant lateral thrusters located in front of the
center of mass (no movable aerodynamic ϐins were
used). The thrusters are arranged into four layers
with eight motors in each. Each of these thrusters
might be used only once. The operation time of the
thruster is less than 0.05 s, and the mean thrust is
more than 700 N. This kind of actuation is challeng‐
ing because the object possesses very low control
authority. That means the single pulse thruster can
translate the impact point location by only several
meters. The maximum range is approximately 11 km.
In the considered version, the solution accounts for
only stationary targets.

The GNC system comprises a navigation unit and
an actuation unit. These subsystems are integrated
into a control unit using the mechanical structure.

The main components of the navigation unit are
a set of sensors, a Primary Control Computer (PCC),
and three antennas. The main function of that system
is to use data collected by the sensors and convert
them into information about the object’s ϐlight state.
Thenavigationdata areobtainedusing anoff‐the‐shelf
available Inertial Measurement Unit (IMU), a custom‐
developed GALILEO receiver, a pressure sensor, and
infrared sensors (these sensors are equally spaced
around the circumference of the object body). The PCC
uses an ARM Cortex A7 processor. The data obtained
from all sensors is fused using a Kalman ϐilter. One
of the main difϐiculties of the adopted solution lies
in the fact that the roll angle must be estimated very
precisely (with accuracy < 1∘). The low‐cost micro‐
electromechanical systems (MEMS) gyroscopes that
are available on the market have a low measurement
range (typically up to 2000∘/s) and are not entirely
suitable for the developed system (sensor saturation
could occur). Due to this, satellite signals needed to
be received by the antennas mounted on the sides of
the fuselage to estimate the roll angle. Moreover, the
infrared sensors are used to improve the calculation
accuracy. Additionally, the information about the alti‐
tude is corrected by the readings from the pressure
sensor.

10

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

The actuation unit comprises a Lateral Motors
Control Computer (LMCC), a set of power ampliϐiers,
and lateral motors. The primary function of this unit
is to use the data about the current platform state
(obtained from the navigation module), calculate the
steering commands, and activate the appropriate lat‐
eral thrusters. The LMCC is based on the ARM Cortex
M4 architecture. It calculateswhen eachmotor should
be ϐired to steer the HSUAV on target. The power
ampliϐiers activate the igniters attached to the lateral
motors. They convert the output data from the LMCC
into a set of electrical signals for the 32 ignition chan‐
nels. Each igniter (sometimes called a motor starter)
is responsible for starting the combustion of a single
small solid propellant in the lateral motor. This unit
also includes an Electrostatic Discharge (ESD) protec‐
tion circuit to prevent each igniter from unintentional
release.

Additionally, the HSUAV is equipped with a radio
telemetry downlink that transmits the data (linear
accelerations, angular rates, position, etc.) to the
ground control station (GCS) with a frequency of up
to 500 Hz. The object state can be observed in real‐
time (in the form of graphs and visualization) on the
GCS. During the launch phase, the electronic units
are subjected to high acceleration. For that reason,
triple‐redundant communication channels were used
to increase the system’s reliability and minimize the
probability of failure in ϐlight.

The onboard battery powers all electronic subsys‐
tems described above.

3. Simulation Model Description
In the MBD approach, one of the ϐirst steps is to

create a realistic plant model. To make the real pro‐
totype of the hardware, the detailed ϐlight simulation
model of the real object was developed and imple‐
mented in the MATLAB/Simulink environment. The
baseline mathematical formulation can be found in
”Appendix A”. The detailed description of the math‐
ematical model and its implementation can be found
in [26,29,30,42,43,56].

The vehicle subsystems (main motor, lateral
thrusters, onboard sensors, etc.) were modeled based
on the data of real hardware. The dynamics model
parameters were obtained mainly by the experiments
in laboratory conditions and ϐirings of the existing
prototypes (unguided ones). Additionally, they
were conϐirmed using CAD models of the structure.
HSUAV moments of inertia were measured using
biϐiliar and quadϐilar torsional pendulums. The thrust
curves of the main motor and lateral thrusters were
acquired by measurements on the test stand at
various temperatures. Aerodynamic parameters were
collected by using specialized semi‐empirical and
Computational Fluid Dynamic (CFD) codes. Later,
after initial ϐlight trials, the aerodynamic database
was corrected by the appropriate form factors. The
sensors’ data were found using datasheets from
the manufacturers and conϐirmed by laboratory
experiments.

Also, the launcher dynamics were included in the
model to make the simulation of the initial phase of
ϐlight more realistic and include several important
phenomena (for example, the tip‐off effect). Environ‐
mental conditions (e.g., air temperature and humid‐
ity) are taken into account to predict the atmospheric
properties.

The key element of the simulation is the model
of the control system hardware and the software.
The inputs to the control algorithm are current posi‐
tion coordinates, Tait‐Bryan angles (yaw, pitch, roll),
angular velocities, linear velocities, and linear accel‐
erations. The output is the ϐiring command of each
thruster. The target position coordinates (latitude,
longitude, and altitude) must be known and pro‐
grammed before the launch.

The scheme of the overall control algorithm is pre‐
sented in Figure 1.

The quality of the resulting C code can be affected
by a lot of factors and settings. To appropriately
choose the compiler parameters, the model was cre‐
ated using SAVOIR guidelines [19, 20]. The equa‐
tions of motion were integrated numerically using
a ϐixed‐step Bogacki‐Shampine (third‐order) solver
with a step size of 0.0001 s. Only ϐixed‐step solvers
are currently supported in MATLAB during the code
generation process. The model cannot contain any
blocks that are not supported by the code generator.
Before performing ACG, it is crucial to ensure a well‐
styled Simulink model. All of the inputs and outputs
were named using strict predeϐined conventions. The
names and units were displayed on the signal wires
to eliminate the probability of human error. Signals
were grouped using buses, which ensured readability.
Signal line crossing was eliminated. The scheme also
includes a set of diagnostic outputs that can be used
in later stages to analyze in detail the results on the
actual hardware. Equality comparison using ϐloating
point numbers was avoided because that can lead to
entirely unpredictable results.

A small team of experienced programmers devel‐
oped the model, so it was necessary to perform ver‐
sion control. Each subsequent version of the code
has a unique name with data and time of last saving
included. Simulink Design Veriϐier was also used to
detect potential problems with the block diagram (for
example, dividing by zero or dead logic).

The requirements and acceptance criteria for indi‐
vidual subsystemswere formulated at the initial phase
of the control system development. These require‐
ments were also created for the software. The code
should be efϐicient and able to operate in real‐time
on the target hardware. The control algorithm was
carefully optimized to increase the execution speed
and save the available computational resources. The
autopilot code should be integrated with other soft‐
ware parts created by different cooperators. It is obvi‐
ous that the software should include appropriate com‐
ments and be easy to understand.

11

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Figure 1. Top‐level Simulink scheme of the control algorithm

3.1. Navigation Data Extrapolation

The GNC module can be considered as a com‐
plicated multi‐rate digital system. The data about
the individual HSUAV ϐlight parameters can be deliv‐
ered from the navigation system module with various
(often relatively low) frequencies. For example, the
position using a GALILEO receiver can be obtained
with a frequency of nomore than several hertz. On the
other hand, the raw data from IMU outputs (angular
rates and linear accelerations) could be sampled with
a frequency of up to 200 Hz. These data are fused
using a Kalman ϐilter [73] to obtain a more accurate
estimation of the ϐlight parameters (mainly velocity,
position, and Euler angles), but the output frequency
is no more than 40 Hz. The thrusters can be ϐired
only in certain phases of ϐlight when the roll rate of
the object is approximately 2 revolutions per second
(after apogee). If the roll angle is estimated at 40 Hz,
then the motors can be ϐired with the angular resolu‐
tion 18∘ which is too low. That means the control loop
should operate at a much higher frequency than the
data can be delivered from sensors. It was estimated
that the control algorithm should be recalculatedwith
a frequency of 5000Hz. Thatway, the ϐiring conditions
will be checked with an angular resolution of 0.144∘.

For this reason, an upsampling algorithm should
be applied to obtain the navigation data with the
required frequency. On the other hand, such an algo‐
rithm cannot introduce time delays because then the
objectmight be steered in the inappropriate direction.

A custom module (whose primary function is
to extrapolate the data gathered from the various
onboard sensors)was developed to overcome that dif‐
ϐiculty. This module consists of two parts: extrapola‐
tion of roll angle and position, whichwere determined
to be the most inϐluential on the algorithm’s accu‐
racy. On the output of both extrapolation modules,
the navigational information (roll angle and three‐
dimensional position in space) is delivered with the
desired frequency of 5000 Hz. All other signals are
obtained directly from the navigationmodule without
the extrapolation procedure (their frequency is sufϐi‐
cient).

Figure 2. Roll angle extrapolation block scheme (signal
frequencies denoted in blue font)

The roll angle extrapolation block scheme is pre‐
sented in Figure 2.

Themain idea behind thismethod is that the angu‐
lar rate (obtained directly from gyroscopes) can be
delivered with a higher frequency when compared
to information about the actual roll angle. It was
assumed that between two consecutive samples of
the roll angle, the information on the intermediate
points can be obtained using linear interpolation. The
forwardEulermethodwas used for numerical integra‐
tion of the roll rate 𝑃 to obtain the roll angleΦ:
Φ(𝑛) = Φ(𝑛 − 1) + [𝑡(𝑛) − 𝑡(𝑛 − 1)]𝑃(𝑛 − 1) (1)

where 𝑡 ‐ time and 𝑛 ‐ sample number. After delivering
a new value of the roll angle from the measurement
system, the value of the integral is reset, and the inte‐
gration starts from the new initial condition (which is
the same as the last measured value of the roll angle).

The same ideawas used to extrapolate the position
coordinates:
𝑥𝑛(𝑛) = 𝑥𝑛(𝑛 − 1)+ [𝑡(𝑛) − 𝑡(𝑛 − 1)]𝑈𝑛(𝑛 − 1) (2)
𝑦𝑛(𝑛) = 𝑦𝑛(𝑛 − 1) + [𝑡(𝑛) − 𝑡(𝑛 − 1)]𝑉𝑛(𝑛 − 1) (3)
𝑧𝑛(𝑛) = 𝑧𝑛(𝑛 − 1)+ [𝑡(𝑛) − 𝑡(𝑛 − 1)]𝑊𝑛(𝑛 − 1) (4)
where 𝑈𝑛 , 𝑉𝑛 ,𝑊𝑛 ‐ velocity vector components in
North‐East‐Down frame.
3.2. Guidance Algorithm

A modiϐied Proportional Navigation Guidance
(mPNG) algorithm was developed to steer the object
accurately towards the target. The target location
ሬሬ⃗𝑃𝑇 = [𝑃𝑇𝑥 , 𝑃𝑇𝑦 , 𝑃𝑇𝑧] and the HSUAV position ሬሬ⃗𝑃𝑀 =
[𝑃𝑀𝑥 , 𝑃𝑀𝑦 , 𝑃𝑀𝑧]must be known. The acceleration per‐
pendicular to the line of sight (LOS) is [49]:

ሬሬ⃗𝑎𝑐 = 𝑁ሬሬ⃗𝑉𝑐 ̇ሬ⃗𝜆 (5)

12

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

where 𝑁 ‐ proportionality constant, ሬሬ⃗𝑉𝑐 =
[𝑉𝑐𝑥𝑦 , 𝑉𝑐𝑥𝑧 , 𝑉𝑐𝑦𝑧] ‐ closing velocity and ሬ⃗𝜆 =
[𝜆𝑥𝑦 , 𝜆𝑥𝑧 , 𝜆𝑦𝑧] ‐ line of sight angular rate. The
projections of the closing velocity on the 𝑥𝑦, 𝑥𝑧 and
𝑦𝑧 planes of the North‐East‐Down (NED) coordinate
system are:

𝑉𝑐𝑥𝑦 = −
𝑃𝑇𝑀𝑥𝑉𝑇𝑀𝑥 + 𝑃𝑇𝑀𝑦𝑉𝑇𝑀𝑦

ට𝑃2𝑇𝑀𝑥 + 𝑃2𝑇𝑀𝑦

(6)

𝑉𝑐𝑥𝑧 = −𝑃𝑇𝑀𝑥𝑉𝑇𝑀𝑥 + 𝑃𝑇𝑀𝑧𝑉𝑇𝑀𝑧

ඥ𝑃2𝑇𝑀𝑥 + 𝑃2𝑇𝑀𝑧
(7)

𝑉𝑐𝑦𝑧 = −
𝑃𝑇𝑀𝑦𝑉𝑇𝑀𝑦 + 𝑃𝑇𝑀𝑧𝑉𝑇𝑀𝑧

ට𝑃2𝑇𝑀𝑦 + 𝑃2𝑇𝑀𝑧

(8)

The components of the distance between the target
and the vehicle (along each axis of the NED frame) are:

𝑃𝑇𝑀𝑥 = 𝑃𝑇𝑥 − 𝑃𝑀𝑥 (9)
𝑃𝑇𝑀𝑦 = 𝑃𝑇𝑦 − 𝑃𝑀𝑦 (10)
𝑃𝑇𝑀𝑧 = 𝑃𝑇𝑧 − 𝑃𝑀𝑧 (11)

In a similar way, the components of the relative veloc‐
ities are:

𝑉𝑇𝑀𝑥 = 𝑉𝑇𝑥 − 𝑉𝑀𝑥 (12)
𝑉𝑇𝑀𝑦 = 𝑉𝑇𝑦 − 𝑉𝑀𝑦 (13)
𝑉𝑇𝑀𝑧 = 𝑉𝑇𝑧 − 𝑉𝑀𝑧 (14)

The LOS angles in each plane are:

𝜆𝑥𝑦 = arctan
𝑃𝑇𝑀𝑦
𝑃𝑇𝑀𝑥

(15)

𝜆𝑥𝑧 = arctan 𝑃𝑇𝑀𝑧
𝑃𝑇𝑀𝑥

(16)

𝜆𝑦𝑧 = arctan 𝑃𝑇𝑀𝑧
𝑃𝑇𝑀𝑦

(17)

These angles must be differentiated with respect to
time to obtain LOS rates.

𝑎𝑐𝑥𝑦 = 𝑁𝑉𝑐𝑥𝑦�̇�𝑥𝑦 (18)
𝑎𝑐𝑥𝑧 = 𝑁𝑉𝑐𝑥𝑧�̇�𝑥𝑧 (19)
𝑎𝑐𝑦𝑧 = 𝑁𝑉𝑐𝑦𝑧�̇�𝑦𝑧 (20)

Next, the acceleration obtained from equation 5 must
be converted to the body‐ϐixed frame and compen‐
sated by the gravity:

ሬሬ⃗𝑎𝑏𝑐 = 𝑇𝑏𝑛 (𝑇𝑛𝐿𝑂𝑆 ሬሬ⃗𝑎𝑐 + ሬሬ⃗𝑔) (21)

where

𝑇𝑏𝑛 = ቎
cosΘ cosΨ

sinΦ sinΘ cosΨ− cosΦ sinΨ
cosΦ sinΘ cosΨ+ sinΦ sinΨ

cosΘ sinΨ − sinΘ
sinΦ sinΘ sinΨ+ cosΦ cosΨ sinΨ cosΘ
cosΦ sinΘ sinΨ− sinΦ cosΨ cosΦ cosΘ

቏ (22)

is the transformation matrix from the North‐East‐
Down (NED) frame to the body‐ϐixed frame and

𝑇𝑛𝐿𝑂𝑆 = ቎
− sin 𝜆𝑥𝑦 − sin 𝜆𝑥𝑧 0
cos 𝜆𝑥𝑦 0 − sin 𝜆𝑦𝑧

0 cos 𝜆𝑥𝑧 cos 𝜆𝑦𝑧
቏ (23)

and
ሬሬ⃗𝑔 = ൣ 0 0 −𝑔 ൧ (24)

At the outputs, this algorithm delivers information
about the commanded linear accelerations in the
body‐ϐixed frame. The three components of the accel‐
eration vector are used as inputs to the Firing Logic
(FL) submodule (please see the next section of the
paper). To hit the target successfully, the vehicle
must realize this commanded acceleration. The com‐
manded direction of ϐlight in the body‐ϐixed frame is
calculated as:

𝛾 = arctan
𝑎𝑏𝑐𝑦
𝑎𝑏𝑐𝑧

(25)

The magnitude of the commanded acceleration is:

|�⃗�𝑥𝑦| = ට𝑎𝑏𝑐𝑥
2 + 𝑎𝑏𝑐𝑦

2 (26)
The details about the mPNG algorithm are presented
in [30, 56]. The proposed algorithm can achieve a sig‐
niϐicant impact point dispersion reduction, which was
proved by various studies conducted in e.g. [25,26,29,
35, 63], where very similar types of guidance method
were utilized.

Additionally, it must be remembered that the nav‐
igation system estimates the velocity ሬሬ⃗𝑉𝑏𝐼𝑀𝑈 at the loca‐
tion of IMU, so this value must be converted to the
center of mass:

ሬሬ⃗𝑉𝑏𝑐𝑔 = ሬሬ⃗𝑉𝑏𝐼𝑀𝑈 + ሬሬ⃗𝜔 × (ሬ⃗𝑟𝑏𝐼𝑀𝑈 − ሬ⃗𝑟𝑏𝑐𝑔) (27)
where ሬሬ⃗𝜔 ‐ vector of angular rates, ሬ⃗𝑟𝑏𝐼𝑀𝑈 ‐ location of the
IMU (measured from aft) and ሬ⃗𝑟𝑏𝑐𝑔 ‐ actual position of
object center of mass.
3.3. Firing Logic of the Lateral Thrusters

The discrete nature of actuation makes the guid‐
ance process difϐicult because there is no possibility
of continuously tracking the commanded lateral accel‐
erations. Since only 32 thrusters are available, their
use during the ϐlight must be carefully planned. If the
motors are ϐired too early, then it will be impossi‐
ble to inϐluence the trajectory in the terminal phase
of ϐlight. Moreover, if the time between two pulses
is too short, the platform can achieve high angles of
attack and sideslip, and as a result, disintegration can
occur due to high structural loads. On the other hand,
if the thrusters are ϐired at too large time intervals,
their usage will be ineffective, and the HSUAV will not
achieve its destination.

The ϐiring logic is based on the conjunction of four
conditions that could be expressed mathematically as
(for details, please see [30]):

𝑡 − 𝑡𝑝𝑟𝑒𝑣 ≤ 𝑡𝑡 ∧
|�⃗�𝑥𝑦| ≤ 𝑎𝑡 ∧
|𝛾 − 𝑃𝜏 − Φ𝑖 − 180∘| ≤ 𝛾𝑡 ∧
𝑡 ≥ 𝑡𝑔 ∧ Θ ≤ Θ𝑔

(28)

13

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Figure 3. Simplified sequence of events before
activation of the thrusters

where 𝑡 ‐ actual time, 𝑡𝑝𝑟𝑒𝑣 ‐ time of the previous
ϐiring, 𝑡𝑡 ‐ theminimum allowed time between the two
consecutive pulses, �⃗� ‐ actual acceleration vector, 𝑎𝑡
‐ threshold value, 𝛾 ‐ commanded ϐlight direction, 𝑃 ‐
measured roll rate, 𝜏 ‐ time constant (approximately
one‐half of the burning time of the propellant), Φ𝑖
‐ angular location of the lateral motor, 𝛾𝑡 ‐ angular
tolerance of the lateral motors ϐirings, 𝑡 ‐ time, 𝑡𝑔 ‐
threshold time, Θ ‐ actual pitch angle, Θ𝑔 ‐ pitch angle
threshold.

The individual thruster is ϐired when the output
signal from the algorithm changes from 0 (low state)
to 1 (high state), which happens after all four condi‐
tions are true simultaneously.

The statemachine (Figure 3)was also used to real‐
ize a step‐by‐step control process to prevent too‐early
lateral motor ϐirings for safety reasons. The actuation
unit with the control motors might be activated only
after detecting the launch event (longitudinal acceler‐
ation of more than 50 m/s2 over 0.4 s).
3.4. Pulse Thrusters Assignment

The lateral thrusters are ϐired in the predeϐined
sequence prepared as a ϐiring table (block ”Motor‐
FireMatrix_simple” in Figure 1. The system usermight
program this sequence before the launch. An example
of such a table is presented in Table 1, where the
ϐirst column is the number of the pulse, the second
column is the ID of the thruster, and the last column is
the angular position of the thruster on the fuselage’s
circumference.

Table 1. Example of the firing table.

Pulse no. Thruster ID Angular position
1 2 0𝑜
2 5 25𝑜
… … …
32 28 285𝑜

4. Automatic C Code Generation
The software should be developed using a strict

strategy. Several management methodologies exist
that can be applied, but some are unsuitable in this
context. For example, the waterfall methodology was
not feasible because the initial requirements were not
fully formulated at the beginning of the process. The
software development process diagram is presented
in Figure 4.

The onboard hardware is quite limited in compu‐
tational resources, and it is evident that the control
algorithm prototype developed in MATLAB must be
implemented in the appropriate low‐level program‐
ming language. The Simulink Coder (earlier Real Time
Workshop) and Embedded Coder were used for auto‐
matic code generation. However, this MATLAB exten‐
sion was insufϐicient to automate the whole process
entirely. For this reason, a custom code was devel‐
oped to generate, compile, run, and test the algorithm.
Microsoft Visual Studio (MS VS) 2019 was used to
compile the code.
4.1. Model Build Options

To generate the code appropriately, the settings
must be carefully chosen, as the default code genera‐
tion settings are not optimal [50]. ISO/IEC 9899:1999
C language standard was used. The code was gen‐
erated with various settings, and the results were
assessed for each combination of parameters. For the
generated code, a Visual C\C++ ϐile for Embedded
Coder was chosen. Also, the inϐluence of code opti‐
mization settings on the accuracy of the generated
code was investigated. After a set of trials, it was
decided to set the optimization level as a minimum.
The algorithm parameters (e.g., target location can
be set as inlined or tunable. It was decided that they
should be inlined in the code to reduce memory usage
and increase code efϐiciency. In that way, there is no
need to preallocate the memory for the parameters.

The embedded Coder Support Package for ARM
Cortex‐M Processors was used to ensure that the code
would be effective in realizing math operations using
the Cortex Microcontroller Software Interface Stan‐
dard (CMSIS) library. Using this addon, it is possible
to replace some functions on themore effective imple‐
mentations (for example, ”sin” trigonometric function
is replaced on ”arm_sin_f32”).

Single‐precision ϐloat‐type numeric numberswere
used to save the available memory. By default, MAT‐
LAB operates on double‐precision numbers, but using
them in the microcontroller is not necessary and seri‐
ously slows down the computations. For that reason,
all input and output ports in the Simulink blocks of the
control systemmodel weremanually set to ”single”. In
that way, it was ensured that there would be no unin‐
tentional conversion between ”single” and ”double”. It
was detected that this issue is crucial and might lead
to catastrophic consequences.

14

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Figure 4. Software development process

4.2. Code Verification Methodology

Before being used on real hardware, the algorithm
must be tested for various operating conditions. A cus‐
tom test procedurewasdeveloped to verify the control
algorithm’s reliability and ensure high code coverage.

The code generation process started with the
selection of an appropriate ϐlight scenario. At ϐirst,
a vast number of Model‐in‐the‐Loop (MIL) simula‐
tions (for individual ϐlight scenarios) were evaluated
to detect potential problems at the early stage of con‐
trol system development. At this stage, only a con‐
trol module model was connected with the HSUAV
model. These tests were realized for various launcher
azimuth and elevation angles, various thrust curves
of the lateral thrusters, etc. Next, the structure of
the Simulink control system model was iteratively
optimized to achieve the best possible conϐiguration
and decrease execution time. The model was care‐
fully checked to prevent inefϐicient parts of the code
(for example, algebraic loops). Not all functions are
supported for code generation. In that case, a custom
equivalent block structure replaced such an unsup‐
ported function. Simulink Proϐiler was used to mea‐
sure the execution time of individual model compo‐
nents. Simulink ”Accelerator mode” was set to speed
up the execution time. In thatway, the resulting time of
a single simulation was decreased to only 7 s (for 50 s
of the real ϐlight). Then, Monte Carlo simulations were
used extensively to evaluate accuracy and precision.
The Parallel Computing Toolbox was used to assess
the simulations on the workstation (Intel® Core™ i9
and 16 GB RAM). In that way, it was possible to sim‐
ulate thousands of ϐirings and estimate the measures
of dispersion (for example, Circular Error Probable).
Also, parametric analysiswas conducted to investigate
the inϐluence of individual autopilot settings on the
overall accuracy and to understand the system behav‐
ior. The example of results from this methodology can
be found in [26]. This phase ends when the controller
model meets the predeϐined requirements and gener‐
ates appropriate outputs.

After the MIL stage, detailed documentation was
created to describe the low‐level functionality of the
ϐlight simulation. The documentation of the results
was based on the automatic generation of structured
reports. After each simulation in MATLAB, two text
ϐiles were recorded and saved on the computer disc.
The ϐirst ϐile included in the tabular form time and
platform ϐlight parameters: angular rates, position,
Euler angles, and linear accelerations. The second
ϐile included the array of ϐiring commands. In the
later stages of the whole testing process, the above‐
mentioned two ϐiles were used as reference data (in
the end, the output of the ϐinal code should match the
reference ϐiring commands).

After completing the MIL phase, the next step was
to perform Software‐in‐the‐Loop (SIL) tests. At the
SIL stage, the C code from only the autopilot module
was generated and used in the control loop instead
of the controller system model. The traceability func‐
tion that is available in Embedded Coder was used
extensively to navigate between the Simulink model
and C code. These tests were performed on the stan‐
dard desktop computer (Intel® Core™ i7, 32 GB RAM,
MSWindows 11 operating system) without dedicated
hardware. At this stage, checking if the autopilot soft‐
ware could be implemented was possible.

Additionally, the code was tested externally to
ensure no problems with the generated C software.
The above‐mentioned custom‐developed test proce‐
dure was as follows. The C code was run on a Desktop
computer in MS VS, and the results (lateral thruster’s
ϐiring commands) were stored in a separate text ϐile.
Then, both text ϐiles (reference data from MATLAB
obtained at the MIL stage and results from the stan‐
dalone C code) were compared. If the results met the
acceptance criteria, the C code was ready to be imple‐
mented on the real hardware and tested again.

15

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

If any anomaly output or unintended behavior
was observed, then it was necessary to return to the
MIL stage, introduce modiϐications, conϐirm that after
adjustments, theMIL results were still acceptable, and
then again continue the SIL level using the modiϐied
software. This process was automatized using MAT‐
LAB scripts.

Next, the Processor‐in‐the‐Loop (PIL) phase was
performed. The developed algorithm in the form of
C code was implemented on real hardware with an
ARM Cortex M4 processor. The developed control sys‐
tem was tested in laboratory conditions. At ϐirst, the
(PIL) simulation was evaluated not in real‐time. The
reference data, including ϐlight parameters, were sent
from the text ϐile to the hardware by the interface
(these data were used instead of the information from
the navigation unit). The control computer calculated
steering commands, and the outputs from the sys‐
tem were logged into text ϐiles. The main goal of that
stage was to check that the results were the same as
the reference data. Then, real‐time calculations were
performed to ensure that the control loop was able
to operate with a sufϐicient frequency (5000 Hz, as
mentioned before).

One of the last steps of the testing was the
Hardware‐in‐the‐Loop simulation. At this stage, the
controller performance can be veriϐied (at least par‐
tially) without using the complete real plant. This
approach ismuch safer than testing the control system
on the real object in ϐlight tests. The system operated
in real‐time.

In the last stage, the results fromMIL, SIL, PIL, and
HIL were compared to ensure that the results were in
agreement. If the results of HIL were unsatisfactory,
the process came back to MIL, SIL, or PIL levels. Oth‐
erwise, if the code met the acceptance criteria, it was
decided that the software might be implemented on
the real vehicle.

5. Results and Discussion
The main goal of the experiments was to check

the numerical equivalency (or eventually similarity)
of the results between the model in Simulink and the
resulting C code that might be directly implemented
on the real hardware. The obtained C code must work
like the original MATLAB program when tested with
the same input data. The numerical discrepancy can
be caused by various issues, for example, low‐level
implementations of the trigonometric functions in the
two programming languages [54].

MATLAB R2023 with Update 5 was used to per‐
form numerical simulations. The control algorithm
was improved step by step, iteratively. Several iter‐
ations of MIL, SIL, and PIL simulations were evalu‐
ated to meet the acceptance criteria. The solution was
acceptable if the impact point dispersion measured
using Circular Error Probable 50% (CEP50%) was
smaller than 25 m and the results were repeatable for
various ϐlight scenarios. Here, the selected example of
a mission scenario is presented.

Figure 5. Three‐dimensional flight trajectory

Figure 6. Position errors (in the last phase of flight)

The following initial conditions were assumed:
launcher elevation angle 45.2∘ and azimuth 46.5∘.
The algorithm settings were as follows: 𝑡𝑡 = 0.25 s
(minimum time between two pulses), Θ𝑔 = 5∘ (pitch
angle threshold), 𝑡𝑔 = 30 s (threshold time), 𝛾𝑡 = 1.5∘
(angular tolerance of lateral motor ϐirings), 𝑎𝑡 = 0.5
m/s2 (threshold value of the lateral acceleration). The
launcher was located at the origin of the NED coordi‐
nate system. It was assumed that the target is station‐
ary, and its coordinates in the NED frame were set to
(6430.7, 6222.0, 0.0) m.

At ϐirst, MIL tests were evaluated for two cases:
unguided ϐlight (the control system was intentionally
deactivated) and for the guided one. The comparison
of the ϐlight paths is presented in Figure 5. In Figure 6,
the errors between the target location and the actual
position of the HSUAV are shown for the terminal
phase of ϐlight. Angular rates (roll, pitch, and yaw) are
shown in Figure 7 and orientation angles in Figure 8.

The uncontrolled HSUAV ground range is about
8950.3 m, and the maximum achieved altitude is
approximately 2680m. For the unguided platform, the
impact point coordinates are (6378.1, 6279.1) m, and
the achieved miss distance was 77.58 m.

16

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Figure 7. Angular rates

Figure 8. Euler angles (roll, pitch, and yaw)

For the controlled one, the impact point is located
at (6429.0, 6220.6) m, so only 2.18 m from the target.
That means the lateral motors can successfully steer
the HSUAV to the target.

All three components of the position error should
ideally be 0. For the unguided object, the x and y errors
(in the horizontal plane) deviated signiϐicantly from
the desired value. On the other hand, for the guided
one they are very small (<2 m).

The absolute value of the roll rate increases in
the active portion of the ϐlight (when the main motor
operates). The minus sign in the ϐirst plot in Figure 7
means that theHSUAV rotated counterclockwisewhen
looking from aft. For the controlled ϐlight, the oscil‐
lations of pitch and yaw rate signals after 30 s result
from the ϐirings of lateral motors.

For the guided object, the disturbances can also be
observed on pitch and yaw angle time histories.

The forces generated by the lateral motors in the
aeroballistic frame attached to the platform center of
mass are presented in Figure 9. It can be observed that
21 lateral motors were used.

Figure 9. Forces generated by lateral motors

Figure 10. Impact point dispersion (uncontrolled flights)

Figure 11. Impact point dispersion (controlled flights)

Later, a set of Monte‐Carlo simulations were per‐
formed (300 runs for each scenario). The comparison
of impact point dispersion for unguided and guided
scenarios is presented in Figures 10 and 11.

The CEP50 centered on the target for uncontrolled
scenario one is 161.24 m. Some of the impact points
are located572.12m fromtheaimingpoint (please see
CEP100%).

17

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Figure 12. Number of activated lateral motors

There is a systematic offset between the mean
point of impact (MPI) and the target. With the control
system applied, CEP50% decreased to 4.50 m. That
meansusing a control systemreduces the impact point
dispersion (measured using CEP50%) by approxi‐
mately 35.83 times. The location ofMPI coincideswith
the target. This is important from a practical point of
viewbecause the unintended collateral damage can be
minimized.

Next, the C code was generated, and SIL simula‐
tions occurred. Finally, the obtained C codewas imple‐
mented on the target hardware with ARM Cortex M4.
The PIL simulations were evaluated, and the obtained
results were compared with MIL and SIL. The com‐
parison of outputs from the controller implemented in
Simulink and using C code is presented in Figure 12.
The abovementioned ϐigure illustrates the number of
ϐiring commands obtained from the original model in
Simulink and from the SIL and PIL simulations. In the
ideal situation, lines should coincide with each other.
Then, theoriginal Simulinkmodel andCcodewouldbe
numerically equivalent. In practice, due to numerical
rounding errors, themodel andC code are numerically
similar but not perfectly identical.

Up to 30.37 s, no thruster was activated because
the conditions given by Equation 28were not fulϐilled.
That means the HSUAV was in an unguided ϐlight.
Then, a series of 21 ϐirings occurred. The last motor
in the sequence was activated in 41.01 s.

To better visualize and understand the eventual
numerical errors, in Figure 13, the plot of time differ‐
ences between Simulink andC code generated in SIL in
evaluating ϐiring commands is shown. It was assumed
that the value of the acceptance threshold is 0.003 s.

The dots indicate that formost of themotors, there
was no time difference between results from Simulink
and C code. In 4 cases, the difference was smaller
than 8e‐15 s. The results obtained indicate that the C
code possesses functionality identical to the original
Simulink model.

Figure 13. Time differences in firing commands
(Simulink vs C code)

Figure 14. Control system prototype during the
laboratory experiments

In the next stage, a series of laboratory Hardware‐
in‐the‐loop experiments with the actual hardware
were performed. This issue is not trivial because it is
quite difϐicult to mimic the real conditions (for exam‐
ple, linear accelerations) in the static tests. Here, only
the basic description of these tests is presented for
legal reasons. Themain goal of the tests was to ensure
that the lateralmotors could be ϐired in the right direc‐
tion and at appropriate time intervals. For example, if
the HSUAV should turn left (when looking from aft),
then the thrusters must be ϐired on the right side of
the fuselage. To verify the control unit, a simpliϐied
laboratory test stand was developed. The apparatus
(Figure 14) consisted of a mounting, electric rotor,
encoders, control unit, and operator’s control desk.

The main computer electronics were powered by
the onboard rechargeable lithiumpolymer battery (12
V) integrated with the control system. The electric
motor that drives the stand was connected to a dif‐
ferent power source. The remaining elements (main
solid propellant rocket motor and nose section) were
removed because they are separate units (not neces‐
sary in the experiments). The developed control algo‐
rithm was implemented in the onboard computer.

The electric motor about the longitudinal axis
rotated the controlmodulewith the same angular rate
as obtained from the numerical simulation.

18

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

That way, the realistic input data about the roll
angular rate and the roll angle from the navigation
systemwere generated. The test stand is stationary, so
the information about the position, linear speed, and
accelerations cannot be delivered directly from the
navigation module (values of these signals are zero).
For that reason, the information about the other ϐlight
parameters was delivered directly to the onboard
computer from the numerical simulation.

The ϐiring commands were logged and compared
with the data obtained from previous stages of test‐
ing (MIL, SIL). Firings of the lateral motors can be
ineffective and problematic in laboratory conditions.
A signiϐicant amount of time is required to prepare
the test setup for the single test. After each test, the
spent motors must be replaced with new ones. The
lateral motors also produce a lot of smoke. To solve
the abovementioned problems, instead of using real
pulse thrusters, a set of LEDs (light‐emitting diodes)
was used to visualize the results (installed at the same
locations as the original motors). The time of the
operation of the single diode was set to be the same
as the operation time of the real pulse thruster. The
systemwas monitored using a high‐speed camera (up
to 5000 frames per second). Using this approach, the
experiments can be repeated many times. That way,
it was conϐirmed that the developed control system
operates properly and is ready for ϐlight trials. Real
tests are required to prove the correctness of the sys‐
tem’s operation because even a sophisticated model
cannot predict all the physical phenomena that can
occur in ϐlight.

6. Conclusions and Future Work
Developing the software for the autopilot is com‐

plicated, challenging, and time‐consuming. This pro‐
cess can be performed much more efϐiciently using a
model‐based design approach than traditional hand
coding. Also, the integration and testing phases can
be done in a structured and repeatable manner. The
probability of introducing human‐made errors can be
minimized. It might be expected that this approach
will gain more and more popularity in such applica‐
tions. The main contribution of the reported research
is the detailed description of model‐based develop‐
ment software for the gasodynammically controlled
guided HSUAV. Built‐in MATLAB tools and custom‐
developed veriϐication procedureswere used to create
reliable software for the autopilot. SAVOIR guidelines
were applied to perform the overall workϐlow. MIL,
SIL, PIL, and HIL tests were completed to verify the
correctness of the solution. The need for manual code
implementation on the target hardware was mini‐
mized in the described process. Using MBD allowed
moving some testing activities to the earlier stages of
the system development. The results indicate that a
good numerical similarity between the Simulink pro‐
totype and the C code was achieved. The presented
results partially ϐill the existing literature gap and
extend the simulation study reported in the papers
[30,42].

Figure 15. Coordinate systems

Future research might involve code optimization
to achieve higher computational efϐiciency and more
experiments in laboratory conditions with real equip‐
ment. Hardware‐in‐the‐Loop testing using dedicated
Speedgoat target hardware and Simulink Real‐Time
might be evaluated. The performance of the developed
control system will be carefully checked during the
real ϐlight tests.

7. Appendix A ‐ Mathematical model of the
HSUAV

7.1. Dynamic Equations of Motion

The coordinate systems used in the mathematical
model are presented in Figure 15.

The dynamic equations of motion were derived
using the linear and angular momentum change the‐
orems for the 6 degrees of freedom rigid body taking
into account the mass variation in time. In the body‐
ϐixed, non‐inertial coordinate system 𝑂𝑏𝑥𝑏𝑦𝑏𝑧𝑏 (the
origin 𝑂𝑏 does not coincide with the center of mass of
the vehicle), the equations are as follows:

�̃�Π⃗
�̃�𝑡 + Ω⃗ × Π⃗ = �⃗�𝑏 (29)

�̃��⃗�0
�̃�𝑡 + Ω⃗ × �⃗�0 + �⃗�𝑏 × Π⃗ = �⃗�𝑏 (30)

where Ω⃗ = ൣ𝑃 𝑄 𝑅൧𝑇 ‐ vector of the angular veloc‐
ities, �⃗�𝑏 = ൣ𝑋𝑏 𝑌𝑏 𝑍𝑏൧

𝑇 ‐ the vector of forces acting
on the vehicle, �⃗�𝑏 = ൣ𝐿𝑏 𝑀𝑏 𝑁𝑏൧

𝑇 ‐ the vector of
torques with respect to point 𝑂𝑏 and �̃�

�̃�𝑡 ‐ the local
derivative. Linear and angular momentum for a rigid
body are:

Π⃗ = 𝑚 ቀ�⃗�𝑏 + Ω⃗ × 𝑟𝐶ቁ (31)
�⃗�0 = 𝐼Ω⃗ + 𝑟𝐶 ×𝑚�⃗�𝑏 (32)

where 𝑚 ‐ a mass of the object, �⃗�𝑏 = ൣ𝑈 𝑉 𝑊൧𝑇 ‐
the velocity vector, I ‐ a moment of inertia tensor, and
𝑟𝐶 ‐ the center of mass location with respect to point
𝑂𝑏 .

19

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

The nonlinear dynamic equations of motion of the
projectile are as follows:

𝑚 ̇⃗𝑉𝑏 + ̇⃗Ω × 𝑆 + Ω⃗ × 𝑚𝑉𝑏 + Ω⃗ × ቀΩ⃗ × 𝑆ቁ = �⃗�𝑏 (33)

𝑰 ̇⃗Ω+𝑆× ̇⃗𝑉𝑏+�̇�Ω⃗+Ω⃗×𝑰Ω⃗+Ω⃗×ቀ𝑆 × 𝑉𝑏ቁ+�⃗�𝑏×ቀΩ⃗ × 𝑆ቁ = �⃗�𝑏
(34)

where𝑆 = 𝑚𝑟𝐶 ‐ the ϐirstmoment ofmass. Thepropul‐
sion effects are included on the right side of the above‐
mentioned equations. In the moment’s equations, the
jet damping effect was neglected because, at low ϐlight
altitudes, it is quite small when compared to aero‐
dynamic damping. Next, the cross‐products could be
replaced by the matrix multiplication, and the skew‐
symmetric matrix notation, []𝑥 could be used. As a
result, the equations of motion could be written as:

ቈ𝑚1 −[S]𝑥
[S]𝑥 I ቉ ൥

⃗̇𝑉𝑏
̇⃗Ω
൩ + ቈ0 0

0 �̇�቉ ቈ
𝑉𝑏
Ω⃗ ቉ +

ቈ [Ω]𝑥 0
[𝑽𝒃]𝑥 [Ω]𝑥቉ ቈ

𝑚1 −[𝑺]𝑥
[𝑺]𝑥 𝑰 ቉ ቈ𝑉𝑏Ω⃗ ቉ = ቈ𝐹𝑏𝑀𝑏

቉ (35)

where 0 ‐ zero matrix and 1 ‐ unit matrix. In the short
form, this is:

𝑨�̇� + �̇�𝒙 + 𝝎𝑨𝒙 = 𝑭𝑩 (36)

where the state vector has the form x =
ൣ𝑈 𝑉 𝑊 𝑃 𝑄 𝑅൧𝑇 . This equation can be
integrated numerically to obtain the actual values of
the state vector.
7.2. Angular Orientation of the Vehicle

Quaternions were used to describe the object ori‐
entation:

e = 𝑒0 + 𝑒1i+ 𝑒2j+ 𝑒3k (37)
where 𝑒0, 𝑒1, 𝑒2, 𝑒3 ‐ the real numbers and i, j,k are the
axes versors. The kinematic equations that connect
the rate of change of the quaternion elements with the
angular rates are:

⎡
⎢
⎢
⎣

�̇�0
�̇�1
�̇�2
�̇�3

⎤
⎥
⎥
⎦
= −12

⎡
⎢
⎢
⎣

0 𝑃 𝑄 𝑅
−𝑃 0 −𝑅 𝑄
−𝑄 𝑅 0 −𝑃
−𝑅 −𝑄 𝑃 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑒0
𝑒1
𝑒2
𝑒3

⎤
⎥
⎥
⎦
−𝑘𝐸

⎡
⎢
⎢
⎣

𝑒0
𝑒1
𝑒2
𝑒3

⎤
⎥
⎥
⎦
(38)

where 𝑘 ‐ the feedback coefϐicient (assumed 1) and 𝐸
‐ the bounding equation violation coefϐicient 𝐸 = 𝑒20 +
𝑒21 +𝑒22+𝑒23−1. Quaternions are also used to calculate
the transformation matrix from the body 𝑂𝑏𝑥𝑏𝑦𝑏𝑧𝑏 to
the North‐East‐Down coordinate system𝑂𝑛𝑥𝑛𝑦𝑛𝑧𝑛 as:

Λ = ቎
𝑒20 + 𝑒21 − 𝑒22 − 𝑒23 2(𝑒1𝑒2 − 𝑒0𝑒3)
2(𝑒0𝑒3 + 𝑒1𝑒2) 𝑒20 − 𝑒21 + 𝑒22 − 𝑒23
2(𝑒1𝑒3 − 𝑒0𝑒2) 2(𝑒0𝑒1 + 𝑒2𝑒3)

2(𝑒0𝑒2 + 𝑒1𝑒3)
2(𝑒2𝑒3 − 𝑒0𝑒1)

𝑒20 − 𝑒21 − 𝑒22 + 𝑒23
቏ (39)

The transformation matrix (39) could be used to
formulate the relations between the rate of change
of the position in 𝑂𝑛𝑥𝑛𝑦𝑛𝑧𝑛 and linear velocities in
𝑂𝑏𝑥𝑏𝑦𝑏𝑧𝑏:

቎
�̇�𝑛
�̇�𝑛
�̇�𝑛
቏ = Λ ቎

𝑈
𝑉
𝑊
቏ (40)

Quaternions could be converted to orientation angles
(roll, pitch, and yaw) using the relations:

Φ = arctan 2(𝑒0𝑒1 + 𝑒2𝑒3)
𝑒20 − 𝑒21 − 𝑒22 + 𝑒23

(41)

Θ = arcsin2(𝑒0𝑒2 − 𝑒1𝑒3) (42)

Ψ = arctan 2(𝑒0𝑒3 + 𝑒1𝑒2)
𝑒20 + 𝑒21 − 𝑒22 − 𝑒23

(43)

The initial quaternion could be calculated from the
initial orientation angles in the following way:

𝑒0 = cos Φ2 cos Θ2 cos Ψ2 + sin Φ2 sin Θ2 sin Ψ2 (44)

𝑒1 = sin Φ2 cos Θ2 cos Ψ2 − cos Φ2 sin Θ2 sin Ψ2 (45)

𝑒2 = cos Φ2 sin Θ2 cos Ψ2 + sin Φ2 cos Θ2 sin Ψ2 (46)

𝑒3 = cos Φ2 cos Θ2 sin Ψ2 − sin Φ2 sin Θ2 cos Ψ2 (47)

7.3. Total External Loads

The external forces and torqueswere calculated as
the sumof aerodynamics �⃗�𝑎 and �⃗�𝑎 , gravity �⃗�𝑔 and �⃗�𝑔 ,
thrust �⃗�𝑠 and �⃗�𝑠 and lateral solid propellant thrusters
�⃗�𝑠𝑘 and �⃗�𝑠𝑘:

�⃗�𝑏 = �⃗�𝑎 + �⃗�𝑔 + �⃗�𝑠 + �⃗�𝑠𝑘 (48)
�⃗�𝑏 = �⃗�𝑎 + �⃗�𝑔 + �⃗�𝑠 + �⃗�𝑠𝑘 (49)

7.4. Aerodynamic Loads

The vectors of aerodynamic force andmoment are
calculated with respect to point 𝑂𝑒 , so with respect to
point 𝑂𝑏 they are given as:

�⃗�𝑎 = ቎
𝑋𝑎
𝑌𝑎
𝑍𝑎
቏ = 1

2𝜌|�⃗�𝑏|
2𝑆 ቎

𝐶𝑋(𝛼, 𝛽,𝑀𝑎)
𝐶𝑌(𝛼, 𝛽,𝑀𝑎)
𝐶𝑍(𝛼, 𝛽,𝑀𝑎)

቏ (50)

�⃗�𝑎 = ቎
𝐿𝑎
𝑀𝑎
𝑁𝑎

቏ = 1
2𝜌|�⃗�𝑏|

2𝑆𝑑 ቎
𝐶𝑙(𝛼, 𝛽,𝑀𝑎)
𝐶𝑚(𝛼, 𝛽,𝑀𝑎)
𝐶𝑛(𝛼, 𝛽,𝑀𝑎)

቏ + 𝑟𝑒 × �⃗�𝑎

(51)

where 𝜌 ‐ the air density, 𝑆 ‐ the cross‐section area of
the fuselage, and 𝑑 ‐ its diameter, 𝑟𝑒 = 𝑟𝑤𝑒 − 𝑟𝑤𝐶 + 𝑟𝐶
is the vector describing the location of point 𝑂𝑒 with
respect to point 𝑂𝑏 , 𝑟𝑤𝑒 is the position of point 𝑂𝑒
with respect to rocket’s base and 𝑟𝑤𝐶 is the position of
point 𝑂𝑏 with respect to the main motor’s exit nozzle.
Aerodynamic angles of attack 𝛼 and sideslip 𝛽 as well
as the Mach number𝑀𝑎 are:

𝛼 = arctan 𝑊 −𝑊𝑤
𝑈 − 𝑈𝑤

(52)

20

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

𝛽 = arcsin 𝑉 − 𝑉𝑤
|�⃗�𝑏|

(53)

𝑀𝑎 = |�⃗�𝑏|
𝑎 (54)

where 𝑈𝑤 , 𝑉𝑤 ,𝑊𝑤 ‐ components of the
wind velocity vector in body frame, |�⃗�𝑏| =
ඥ(𝑈 − 𝑈𝑤)2 + (𝑉 − 𝑉𝑤)2 + (𝑊 −𝑊𝑤)2 and 𝑎 ‐ the
local speed of sound. The aerodynamic coefϐicients
are:

𝐶𝑋 = (𝐶𝑋𝑏𝑎𝑠𝑒 0 + 𝐶𝑋𝑏𝑎𝑠𝑒 𝛼2
𝛼2 + 𝐶𝑋𝑏𝑎𝑠𝑒 𝛽2

𝛽2)
+ (𝐶𝑋𝑒𝑛𝑔 0 + 𝐶𝑋𝑒𝑛𝑔 𝛼2

𝛼2 + 𝐶𝑋𝑒𝑛𝑔 𝛽2
𝛽2)𝛿𝑒𝑛𝑔

𝐶𝑌 = 𝐶𝑌0 + 𝐶𝑌𝛽𝛽
𝐶𝑍 = 𝐶𝑍0 + 𝐶𝑍𝛼𝛼

𝐶𝑙 = 𝐶𝑙0 + (𝐶𝑙𝑝0 + 𝐶𝑙𝑝𝛼2 𝛼
2 + 𝐶𝑙𝑝𝛽2 𝛽

2) 𝑃𝑑
2|�⃗�𝑏|

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼𝛼
𝐶𝑛 = 𝐶𝑛0 + 𝐶𝑛𝛽𝛽

(55)

where 𝐶𝑋𝑏𝑎𝑠𝑒 0 ‐ axial force coefϐicient (for 𝛼 = 𝛽 =
0∘), 𝐶𝑋𝑏𝑎𝑠𝑒 𝛼2

, 𝐶𝑋𝑏𝑎𝑠𝑒 𝛽2
‐ yaw‐axial force coefϐicients,

𝐶𝑌𝛽 ‐ side force with the angle of sideslip derivative,
𝐶𝑍𝛼 ‐ normal force with respect to the angle of attack
derivative, 𝐶𝑙0 ‐ spin driving rolling moment coefϐi‐
cient, 𝐶𝑙𝑝0 ‐ spin damping derivative, 𝐶𝑚𝛼 ‐ pitching
moment with respect to the angle of attack deriva‐
tive, 𝐶𝑛𝛽 ‐ yawing moment derivative with respect
to sideslip angle, 𝐶𝑚𝑞 ‐ pitching moment coefϐicient
derivative with pitch rate and 𝐶𝑛𝑟 ‐ yawing moment
coefϐicient derivative with yaw rate. Additionally, the
parameter 𝛿𝑒 describes the main motor state (𝛿𝑒 =
0 for the active phase of ϐlight, and 𝛿𝑒 = 1 after
mainmotor burnout, for gliding ϐlight).When themain
motor operates at the beginning of the ϐlight, the base
drag is signiϐicantly lower than after the main motor
burnout. The axial force coefϐicient was obtained for
two system conϐigurations (main motor on/off), and
𝛿𝑒 is used during the simulation to switch between
aerodynamic data tables. The values of the coefϐicients
can be found in [30].

7.5. Gravity Loads

Gravitational acceleration in the 𝑂𝑛𝑥𝑛𝑦𝑛𝑧𝑛 coor‐
dinate system is given as �⃗� = ൣ0 0 𝑔0൧

𝑇 . Gravita‐
tional acceleration was assumed to be constant 𝑔0 =
9.80665 m/s2. Gravitational force and torques are
given as:

𝐹𝑔 = 𝑇𝑏𝑔𝑚቎
0
0
𝑔0
቏ (56)

�⃗�𝑔 = 𝑟𝐶 × �⃗�𝑔 (57)

where 𝑇𝑏𝑔 ‐ the transformation matrix from gravita‐
tional to body coordinate system (given by equation
22).

7.6. Main Solid Propellant Motor Loads

Thrust vector can deviate from the geometric lon‐
gitudinal axis of the HSUAV by angle Θ𝑇 in pitch plane
andΨ𝑇 in the yaw plane, so the main motor loads are:

�⃗�𝑠 = 𝐹𝑝(𝑡) ቎
cosΘ𝑇 cosΨ𝑇
cosΘ𝑇 sinΨ𝑇
− sinΨ𝑇

቏ (58)

where 𝐹𝑝(𝑡) is the instantaneous magnitude of the
thrust force (obtained in the simulation using lookup‐
table procedure). Torque generated by themainmotor
with respect to point 𝑂𝑏 could be obtained as:

�⃗�𝑠 = (−𝑟𝑤𝐶 + 𝑟𝐶) × �⃗�𝑠 (59)
7.7. Lateral Thrusters

The gasodynamic control system is based on a set
of identical correction lateral thrusters at the circum‐
ference of the body. The thrust and torque generated
by the 𝑖‐th thruster are:

�⃗�𝑠𝑘𝑖,𝑗 = 𝐹𝑝𝑠𝑘(𝑡) ቎
0

sinΦ𝑖,𝑗
− cosΦ𝑖,𝑗

቏ (60)

�⃗�𝑠𝑘𝑖,𝑗 = ቀ𝑟𝑠𝑘𝑖,𝑗 − 𝑟𝑤𝐶 + 𝑟𝐶ቁ × �⃗�𝑠𝑘𝑖,𝑗 (61)

where 𝐹𝑝𝑠𝑘(𝑡) ‐ the instantaneous thrust force gener‐
ated by the lateral thruster, 𝑖 = 1,… ,𝑀 ‐ the layer
number (𝑖 = 1 means the layer located closest to the
rocket base), index 𝑗 = 1,… ,𝑁 ‐ the number of an indi‐
vidual thruster in a particular layer,Φ𝑖,𝑗 ‐ the azimuth
angle of a thruster is a particular layer, 𝑟𝑠𝑘𝑖,𝑗 ‐ the
vector describing the position of the layerwith respect
to the rocket’s base. The layers are located 1.10 m,
1.15 m, 1.20 m, and 1.25 m from aft, respectively. The
total force and torque generated by the gasodynamic
control system is calculated as the sumof load from all
the lateral motors:

�⃗�𝑠𝑘 =
𝑀

෍
𝑖=1

𝑁

෍
𝑗=1

�⃗�𝑠𝑘𝑖,𝑗 (62)

�⃗�𝑠𝑘 =
𝑀

෍
𝑖=1

𝑁

෍
𝑗=1

�⃗�𝑠𝑘𝑖,𝑗 (63)

7.8. Mass and inertial properties

The instantaneousmass of the vehicle is calculated
as:

𝑚(𝑡) = 𝑚0 −
𝑚𝑝
𝐼𝑐

න
𝑡

𝑡0
𝐹𝑝(𝑡)𝑑𝑡 (64)

where𝑚0 is the initialmass of the object at time 𝑡0,𝑚𝑝
is themass of the propellant, and 𝐼𝑐 is the total impulse
given as:

𝐼𝑐 = න
𝑡𝑘

𝑡0
𝐹𝑝(𝑡)𝑑𝑡 (65)

where 𝑡𝑘 ‐ time of propellant burnout. During the
powered ϐlight phase, the vehicle’s mass center posi‐
tion vector 𝑟𝑤𝐶 measured from the nozzle of the main
motor has the following components:

𝑟𝑤𝐶 = ቂ𝑥𝑐𝑔0 −
𝑥𝑐𝑔0−𝑥𝑐𝑔𝑘

𝐼𝑐
∫𝑡𝑡0 𝐹𝑝(𝑡)𝑑𝑡 0 0ቃ (66)

21

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

where 𝑥𝑐𝑔0 is the center of mass position on the 𝑂𝑏𝑥𝑏
axis during launch and 𝑥𝑐𝑔𝑘 is the center of mass posi‐
tion on the𝑂𝑏𝑥𝑏 axis after the propellant burnout. The
change of moments of inertia also depends on time
and is calculated as:

𝐼𝑖𝑗(𝑡) = 𝐼𝑖𝑗0 −
𝐼𝑖𝑗0 − 𝐼𝑖𝑗𝑘

𝐼𝑐
න
𝑡

𝑡0
𝐹𝑝(𝑡)𝑑𝑡 (67)

where 𝐼𝑖𝑗0 is the moment of inertia tensor component
during launch and 𝐼𝑖𝑗𝑘 is the moment of inertia tensor
component after the propellant burnout.

AUTHORS
Mariusz Jacewicz∗ – Institute of Aeronautics and
Applied Mechanics, Warsaw University of Technol‐
ogy, Nowowiejska 24, 00‐665Warsaw, Poland, e‐mail:
mariusz.jacewicz@pw.edu.pl.
Dariusz Miedziński – Institute of Aeronautics and
Applied Mechanics, Warsaw University of Technology,
Nowowiejska 24, 00‐665Warsaw, Poland, e‐mail: dar‐
iusz.miedzinski2.dokt@pw.edu.pl.
Grzegorz Chmaj – DRI Solutions, Chełmska 21, 00‐
724 Warsaw, Poland, e‐mail: ofϐice@drisolutions.pl.
Robert Głębocki – Institute of Aeronautics and
Applied Mechanics, Warsaw University of Technol‐
ogy, Nowowiejska 24, 00‐665Warsaw, Poland, e‐mail:
robert.glebocki@pw.edu.pl.
∗Corresponding author

ACKNOWLEDGEMENTS
This work was supported by The National Centre
for Research and Development (grant number DOB‐
SZAFIR/03/B/002/01/2021).

References
[1] B. G. Abdelaty, A. Hamdy, and A. N. Ouda, “Flight

vehicle autopilot system: From design to imple‐
mentation”, Automation, Control and Intelligent
Systems, vol. 6, no. 6, 2019, pp. 62–72, doi:
10.11648/j.acis.20180606.11.

[2] N. Ajwad. “Evaluation of Automatic Code Gen‐
eration Tools”. Master’s thesis, Lund University,
Department of Automatic Control, 2007.

[3] K. D. Alpaslan, “Challenges of Weapon Systems
Software Development”, Journal of Naval Science
and Engineering, vol. 5, no. 3, 2009, pp. 104–116.

[4] A. Alsaraj and G. Stufϐle, “Investigation of
hardware‐in‐loop simulation (HILS) for
guidance system”. vol. 1, 2015, pp. 704–708, doi:
10.1109/IAEAC.2015.7428646.

[5] J. Arm, Z. Bradac, P. Fiedler, and V. Kacz‐
marczyk, “Characterizing the Simulink‐based
Code Generation Toolchain for Safety‐critical
Applications in an ARM Cortex‐R Target”, IFAC-
PapersOnLine, vol. 52, no. 27, 2019, pp. 271–276,
doi: 10.1016/j.ifacol.2019.12.672.

[6] A. Arregi, F. Schriever, C. Arias, A. Jung, and
G. T. D. Gmbh, “Ensuring Numerical Repro‐
ducibility for Model‐Based Software Engineer‐
ing”. In: 8th European Conference for Aeronautics
and Space Sciences, vol. 1, 2019, pp. 1–10, doi:
10.13009/EUCASS2019‐790.

[7] R. Bond, S. Bemrich, J. Connelly, G. Pendergrass,
and J. Hulsey, “Missile Guidance Processor Soft‐
ware Development ‐ A Case Study”. In: Proceed-
ings. Real-Time Systems Symposium, vol. 1, 1988,
pp. 60–68, doi: 10.1109/real.1988.51101.

[8] H. Bourbouh, P.‐l. Garoche, T. Loquen, É. Noulard,
and C. Pagetti, “CoCoSim, a Code Generation
Framework for Control/Command Applications
An overview of CoCoSim for multi‐periodic dis‐
crete Simulink models”. In: 10th European
Congress on Embedded Real Time Software and
Systems (ERTS 2020), vol. 1, 2020.

[9] N. P. Brayanov and A. V. Stoynova, “Evaluation
of Model‐Based Code Generation for Embedded
Systems–Mature Approach for Development in
Evolution”, International Journal of Computer and
Information Engineering, vol. 13, no. 8, 2019, pp.
455–460.

[10] B. Carpenter, “Automatic Code Generation for
Spacecraft Attitude Determination and Control”.
In: 2014 IEEE Aerospace Conference, vol. 1, 2014,
pp. 1–5, doi: 10.1109/AERO.2014.6836510.

[11] L. chang and L. kui, “Simulation of
underwater vehicle control based on code
generation technology”. In: 2021 IEEE
2nd International Conference on Big Data,
Artiϔicial Intelligence and Internet of Things
Engineering (ICBAIE), vol. 1, 2021, pp. 773–777,
10.1109/ICBAIE52039.2021.9390015.

[12] J. M. Choe, L. Arnedo, Y. Lee, Z. Sorchini,
A. Mignogna, I. Agirman, and H. Kim, “Model‐
Based Design and DSP Code Generation using
Simulink® for Power Electronics Applications”,
ICPE 2019 - ECCE Asia - 10th International Con-
ference on Power Electronics - ECCE Asia, vol.
3, 2019, pp. 923–926, doi: 10.23919/icpe2019‐
ecceasia42246.2019.8797107.

[13] J. E. Craft. “AUser’s ExperiencewithModel‐Based
Design for GNC‐Based Systems”. https://it.mat
hworks.com/content/dam/mathworks/mathw
orks‐dot‐com/solutions/aerospace‐defense/fi
les/2008/LM_Craft_MWSymp.pdf.

[14] J. E. Craft and B. Rusk. “A User’s Experience with
Simulink and Stateϐlow for Real‐Time Embedded
Applications”. https://it.mathworks.com/conte
nt/dam/mathworks/mathworks‐dot‐com/solu
tions/aerospace‐defense/files/2007/MADC_20
07_08_Craft_TMW.pdf.

[15] E. Denney and S. Trac, “A Software Safety
Certiϐication Tool for Automatically Generated
Guidance, Navigation and Control Code”.
In: 2008 IEEE Aerospace Conference, vol.

22

https://it.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2008/LM_Craft_MWSymp.pdf
https://it.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2008/LM_Craft_MWSymp.pdf
https://it.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2008/LM_Craft_MWSymp.pdf
https://it.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2008/LM_Craft_MWSymp.pdf
https://it.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2007/MADC_2007_08_Craft_TMW.pdf
https://it.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2007/MADC_2007_08_Craft_TMW.pdf
https://it.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2007/MADC_2007_08_Craft_TMW.pdf
https://it.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2007/MADC_2007_08_Craft_TMW.pdf

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

1, Big Sky, MT, USA, 2008, pp. 1–11, doi:
10.1109/AERO.2008.4526576.

[16] T. Erkkinen, “Model Style Guidelines for Flight
Code Generation”. In: AIAA Modeling and Simu-
lation Technologies Conference and Exhibit, vol. 2,
2005, pp. 708–715, doi: 10.2514/6.2005‐6216.

[17] T. Erkkinen and M. Conrad, “Safety‐Critical Soft‐
ware Development Using Automatic Production
Code Generation”, SAE Technical Papers, vol. 1,
no. April, 2007, doi: 10.4271/2007‐01‐1493.

[18] T. Erkkinen and B. Potter, “Model‐Based Design
for DO‐178B with Qualiϐied Tools”. In: AIAA
Modeling and Simulation Technologies Confer-
ence and Exhibit, vol. 1, 2009, pp. 1–13, doi:
10.2514/6.2009‐6233.

[19] European Space Research and Technology Cen‐
tre. “Guidelines for the Automatic Code Genera‐
tion for AOCS/GNC Flight SWHandbook: Volume
1 ‐ General concepts”. Technical report, SAVOIR,
2022.

[20] European Space Research and Technology Cen‐
tre. “Guidelines for the Automatic Code Genera‐
tion for AOCS/GNC Flight SWHandbook: Volume
2 ‐ Mathworks speciϐic guidelines”. Technical
report, SAVOIR, 2022.

[21] M. Fakih and S. Warsitz, “Automatic SDF‐based
Code Generation from Simulink Models for
Embedded Software Development”. In: 5th Inter-
national Workshop on. High Performance Energy
Efϔicient Embedded Systems, vol. 1, 2017.

[22] I. Fey and I. Stürmer, “Code Generation for
Safety‐Critical Systems‐OpenQuestions and Pos‐
sible Solutions”, SAE Technical Papers, vol. 1,
2008, doi: 10.4271/2008‐01‐0385.

[23] J. C. M. Fraticelli. “Auto Code Generation for
Simulink‐Based Attitude Determination Control
System”. Technical report, National Aeronautics
and Space Administration, 2012.

[24] J. C. M. Fraticelli. “Simulink Code Generation.
Tutorial for generating C code from Simulink
Models using Simulink Coder”. Technical report,
National Aeronautics and Space Administration,
2012.

[25] M. Gao, Z. Yongwei, S. Yang, and D. Fang,
“Trajectory Correction Capability Modeling of
the Guided Projectiles with Impulse Thrusters”,
Engineering Letters, vol. 24, 2016, pp. 11–18.

[26] R. Głębocki and M. Jacewicz, “Parametric Study
of Guidance of a 160‐mm Projectile Steered with
Lateral Thrusters”, Aerospace, vol. 7, no. 5, 2020,
doi: 10.3390/aerospace7050061.

[27] N. Holliday. “Software Development with Real‐
Time Workshop Embedded Coder”. https://ww
w.mathworks.com/content/dam/mathworks/
tag‐team/Objects/m/48884_Thales_DualCore.p
df.

[28] R. Hýl and R. Wagnerová, “Fast Development
of Controllers with Simulink Coder”. In: 2017

18th International Carpathian Control Confer-
ence, ICCC 2017, vol. 1, 2017, pp. 406–411, doi:
10.1109/CarpathianCC.2017.7970434.

[29] M. Jacewicz, R. Głębocki, and R. Ożóg, “Monte‐
Carlo Based Lateral Thruster Parameters Opti‐
mization for 122 mm Rocket”. In: R. Szewczyk,
C. Zieliński, and M. Kaliczyńska, eds., Automa-
tion 2020: Towards Industry of the Future, vol. 1,
Cham, 2020, pp. 125–134.

[30] M. Jacewicz, P. Lichota, D. Miedziński, and
R. Głębocki, “Study of Model Uncertainties Inϐlu‐
ence on the Impact Point Dispersion for a Gaso‐
dynamicaly Controlled Projectile”, Sensors, vol.
22, no. 9, 2022, doi: 10.3390/s22093257.

[31] M. C. Jackson and J. R. Henry, “Orion GN&CModel
Based Development: Experience and Lessons
Learned”. In: AIAA Guidance, Navigation, and
Control Conference 2012, vol. 1, 2012, pp. 1–16,
doi: 10.2514/6.2012‐5036.

[32] S. Jacobitz and X. Liu‐Henke, “The Seamless Low‐
cost Development Platform LoRra for Model
based Systems Engineering”. In: Proceedings
of the 8th International Conference on Model-
Driven Engineering and Software Development
- MODELSWARD, vol. 1, 2020, pp. 57–64, doi:
10.5220/0008993500570064.

[33] S. Jacobitz and X. Liu‐Henke, “Automatic Code
Generation for a Seamless Low‐cost Develop‐
ment Platform”. In: Proceedings of the 10th
International Conference on Model-Driven Engi-
neering and Software Development (MODEL-
SWARD 2022), vol. 1, 2022, pp. 294–301, doi:
10.5220/0010894300003119.

[34] H. Jiang, H. Cheng, S. Guo, and X. Li, “Par‐
tition Based Differential Testing for Finding
Embedded Code Generation Bugs in Simulink”.
In: 2023 60th ACM/IEEE Design Automation
Conference (DAC), vol. 1, 2023, pp. 1–6, doi:
10.1109/DAC56929.2023.10247877.

[35] T. Jitpraphai and M. Costello, “Dispersion Reduc‐
tion of a Direct Fire Rocket Using Lateral Pulse
Jets”, Journal of Spacecraft and Rockets, vol. 38,
no. 6, 2001, pp. 929–936, doi: 10.2514/2.3765.

[36] E. H. Kapeel, H. Hendy, A. M. Kamel, and Y. Z.
Elhalwagy, “Terminal Guidance LawHardware In
The Loop Simulation Against Maneuvering Tar‐
gets Using FPGABased Floating Point Approach”.
In: 2021 International Telecommunications Con-
ference (ITC-Egypt), vol. 1, no. 1, 2021, pp. 1–6,
10.1109/ITC‐Egypt52936.2021.9513941.

[37] W. Kom Fotso and X. Querol, “Evaluation of
a Modeling and Automatic C Code Generation
Toolset as an Open Source Alternative Solution”.
In: 6th European Congress on Embedded Real-
Time Software and Systems, vol. 1, 2012.

[38] J. Krizan, L. Ertl, M. Bradac, M. Jasansky, and
A. Andreev, “Automatic Code Generation from
Matlab/Simulink for Critical Applications”. In:

23

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/m/48884_Thales_DualCore.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/m/48884_Thales_DualCore.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/m/48884_Thales_DualCore.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/m/48884_Thales_DualCore.pdf

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Canadian Conference on Electrical and Com-
puter Engineering, vol. 1, 2014, pp. 1–6, doi:
10.1109/CCECE.2014.6901058.

[39] K. Kshirsagar, S. Rane, P. Shah, and R. Sekhar,
“Automatic Code Generation in Model Based
Design and Digital Signal Processing”. In:
2023 4th International Conference for Emerg-
ing Technology, vol. 1, 2023, pp. 1–6, doi:
10.1109/INCET57972.2023.10170569.

[40] V. Lambersky, “Model Based Design and Auto‐
mated Code Generation from Simulink Tar‐
geted for TMS570 MCU”, EDERC 2012 - Proceed-
ings of the 5th European DSP in Education and
Research Conference, vol. 1, 2012, pp. 225–228,
doi: 10.1109/EDERC.2012.6532260.

[41] G. Li, R. Zhou, R. Li, W. He, G. Lv, and T. J. Koo,
“A Case Study on SDF‐Based Code Generation
for ECU Software Development”. In: 2011 IEEE
35th Annual Computer Software and Applications
ConferenceWorkshops, vol. 1, 2011, pp. 211–217,
doi: 10.1109/COMPSACW.2011.45.

[42] P. Lichota, M. Jacewicz, R. Głębocki, and D.Miedz‐
iński, “Wavelet‐Based Identiϐication for Spinning
Projectile with Gasodynamic Control Aerody‐
namic Coefϐicients Determination”, Sensors, vol.
22, no. 11, 2022, doi: 10.3390/s22114090.

[43] P. Lichota, M. Jacewicz, and J. Szulczyk, “Spin‐
ning Gasodynamic Projectile System Identiϐica‐
tion Experiment Design”, Aircraft Engineering
and Aerospace Technology, vol. 92, no. 3, 2018,
pp. 452–459, doi: 10.1108/AEAT‐06‐2019‐0124.

[44] F. Luo and Z. Huang, “Embedded C Code Gen‐
eration and Embedded Target Development
Based on RTW‐EC”, Proceedings - 2010 3rd
IEEE International Conference on Computer Sci-
ence and Information Technology, ICCSIT 2010,
vol. 5, 2010, pp. 532–536, doi: 10.1109/ICC‐
SIT.2010.5563906.

[45] X. Lv, “Automatic Generation of Single‐Phase
SVPWM Embedded Code”, Proceedings -
2019 International Conference on Artiϔicial
Intelligence and Advanced Manufacturing,
AIAM 2019, vol. 1, 2019, pp. 460–463, doi:
10.1109/AIAM48774.2019.00097.

[46] J. M. Maroli, B. A. Morris, J. A. Blystone, and A. M.
Oconnor, “Utilizing Code Generation from Mod‐
els for Electric Aircraft Motor Controller Flight
Software”. In: AIAA AVIATION 2023 Forum, vol.
1, 2023, doi: 10.2514/6.2023‐4274.

[47] MathWorks. “NASA Uses Stateϐlow and Simulink
Coder to Generate Fault‐Protection Code for
Deep Space 1”. https://www.mathworks.com/
company/user_stories/nasa‐uses‐stateflow‐an
d‐simulink‐coder‐to‐generate‐fault‐protection‐
code‐for‐deep‐space‐1.html.

[48] T.‐Y. Moon, S.‐H. Seo, J.‐H. Kim, S.‐H. Hwang,
and J. W. Jeon, “Simulation with Consideration
of Hardware Characteristics and Auto‐generated

Code Using MATLAB/Simulink”. In: 2007
International Conference on Control, Automation
and Systems, vol. 1, 2007, pp. 1494–1498, doi:
10.1109/ICCAS.2007.4406575.

[49] I. Moran and D. T. Altilar, “Three Plane Approach
for 3D True Proportional Navigation”. In: AIAA
Guidance,Navigation, andControl Conferenceand
Exhibit, vol. 8, 2005, doi: 10.2514/6.2005‐6457.

[50] M.Muresan and D. Pitica, “Simulating Embedded
Targets for Efϐicient Code Implementation”. In:
ISSE 2009: 32nd International Spring Seminar on
Electronics Technology: Hetero System Integra-
tion, the path to New Solutions in the Modern
Electronics - Conference Proceedings, vol. 1, 2009,
pp. 1–4, doi: 10.1109/ISSE.2009.5206997.

[51] S. Nadir and D. Streitferdt, “Software Code
Generator in Automotive Field”, Proceedings -
2015 International Conference on Computational
Science and Computational Intelligence,
CSCI 2015, vol. 1, 2016, pp. 13–17, doi:
10.1109/CSCI.2015.186.

[52] O. Netland and A. Skavhaug, “Software Module
Real‐Time Target: Improving Development of
EmbeddedControl Systemby Including Simulink
Generated Code Into Existing Code”. In: 2013
39th Euromicro Conference on Software Engi-
neering and Advanced Applications, vol. 1, 2013,
pp. 232–235, doi: 10.1109/SEAA.2013.51.

[53] J.‐g. Niu, Z.‐j. Wang, C.‐h. Xu, P.‐b. Zhang, and
B. Zhang, “Research on Fuzzy Logic Control
Based on Targetlink Automatic Code”. In:
2019 International Conference on Communica-
tions, Information System and Computer Engi-
neering (CISCE), vol. 1, 2019, pp. 148–151, doi:
10.1109/CISCE.2019.00041.

[54] D. Oddenino. “AUTOCODING WORKING GROUP
Automatic Code Generation for AOCS Flight SW”,
2018.

[55] L. Otava, “Simulink Model Code Generation for
Motor Control Applications”. In: Proceedings of
the 21th Conference STUDENT EEICT 2015, vol. 1,
no. 2, 2015, pp. 470–474.

[56] R. Ożóg, M. Jacewicz, and R. Głębocki, “Modiϐied
Trajectory Tracking Guidance for Artillery
Rocket”, Journal of Theoretical and Applied
Mechanics, vol. 58, no. 3, 2020, pp. 611–622, doi:
10.15632/jtam‐pl/121981.

[57] I. E. Putro and H. Septanto, “Real‐Time Simula‐
tion of Embedded Controller for Missile”, Jurnal
Teknologi Dirgantara, vol. 1, 2019, pp. 129–140.

[58] A. Rugina and J. Dalbin, “Experiences with the
GENE‐AUTO Code Generator in the Aerospace
Industry”. In: ERTS2 2010, Embedded Real Time
Software & Systems, vol. 1, 2010.

[59] M. H. Schwarz, H. Sheng, A. Sheleh, and
J. Boercsoek, “Matlab® / Simulink® Generated
Source Code for Safety Related Systems”.
In: AICCSA 08 - 6th IEEE/ACS International

24

https://www.mathworks.com/company/user_stories/nasa-uses-stateflow-and-simulink-coder-to-generate-fault-protection-code-for-deep-space-1.html
https://www.mathworks.com/company/user_stories/nasa-uses-stateflow-and-simulink-coder-to-generate-fault-protection-code-for-deep-space-1.html
https://www.mathworks.com/company/user_stories/nasa-uses-stateflow-and-simulink-coder-to-generate-fault-protection-code-for-deep-space-1.html
https://www.mathworks.com/company/user_stories/nasa-uses-stateflow-and-simulink-coder-to-generate-fault-protection-code-for-deep-space-1.html

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Conference on Computer Systems and
Applications, vol. 1, 2008, pp. 1058–1063,
doi: 10.1109/AICCSA.2008.4493678.

[60] A. Soldati, R. Zanichelli, F. Brugnano, and C. Con‐
cari, “Implementing Discrete PID Controllers:
BenchmarkingManual vs. Automatic Generation
of Embedded Code”. In: IECON 2016 - 42nd
Annual Conference of the IEEE Industrial Elec-
tronics Society, vol. 1, 2016, pp. 178–183, doi:
10.1109/IECON.2016.7793334.

[61] G. Strub, V. Gassmann, S. Theodoulis, S. Dobre,
and M. Basset, “Hardware‐in‐the‐Loop Experi‐
mental Setup Development for a Guided Projec‐
tile in a Wind Tunnel”. In: 2014 IEEE/ASME
International Conference on Advanced Intelligent
Mechatronics, vol. 1, no. 1, 2014, pp. 458–463,
doi: 10.1109/AIM.2014.6878120.

[62] I. Stürmer, “Certiϐication of Model‐based Code
Generators – Open Problems and Possible Solu‐
tions”. In: Embedded Real Time Software and Sys-
tems (ERTS2008), vol. 1, Toulouse, France, 2008.

[63] A. Szklarski, R. Głębocki, and M. Jacewicz,
“Impact Point Prediction Guidance Parametric
Study for 155 mm Rocket Assisted Artillery
Projectile with Lateral Thrusters”, Archive of
Mechanical Engineering, vol. 67, no. 1, 2020, pp.
31–56, doi: 10.24425/ame.2020.131682.

[64] S. Tamblyn, J. Henry, and E. King, “A model‐based
design and testing approach for orion gn&c ϐlight
softwareddevelopment”. In: IEEEAerospace Con-
ference Proceedings, vol. 1, 2010, pp. 1–12, doi:
10.1109/AERO.2010.5446802.

[65] N. Tancredi. “DiSTERaP Distributed Simulation
Test Environment for Rapid Prototyping”. https:
//www.matlabexpo.com/content/dam/mathw
orks/mathworks‐dot‐com/images/events/ma
tlabexpo/it/2018/distributed‐simulation‐test‐
environment‐for‐rapid‐prototyping‐disterap.p
df.

[66] A. Toom, T. Naks, M. Pantel, M. Gandriau, and
Indrawati, “Gene‐Auto: an Automatic Code Gen‐
erator for a Safe Subset of Simulink/Stateϐlow
and Scicos”. In: Proceeding of the 4th European
Congress on Embedded Real Time Software, vol. 1,
2008.

[67] G. Walde and R. Luckner, “Bridging the tool gap
for model‐based design from ϐlight control func‐
tion design in simulink to software design in
scade”. In: 2016 IEEE/AIAA 35th Digital Avionics
SystemsConference (DASC), vol. 1, 2016, pp. 1–10,
10.1109/DASC.2016.7778044.

[68] G. Waxenegger‐Wilϐing, K. Dresia, M. Oschwald,
and K. Schilling, “Hardware‐In‐The‐Loop Tests of
Complex Control Software for Rocket Propulsion
Systems”. In: 71st International Astronautical
Congress, vol. 1, 2020.

[69] Q. Wu, J. Qiu, C. Zhu, and Y. Wang, “Automatic
Fast Experiment System Design Based on
Matlab Embedded Code”. In: Proceeding
- 2021 China Automation Congress, CAC
2021, vol. 1, 2021, pp. 7360–7363, doi:
10.1109/CAC53003.2021.9728568.

[70] P. Xu, M. Kondo, and M. Edahiro, “Code Genera‐
tion from Simulink Models with Task and Data
Parallelism”, International Journal Of Computers
& Technology, vol. 21, no. 2, 2021, pp. 1–13, doi:
10.24297/ijct.v21i.9004.

[71] A. Yahyaabadi, P. Harrison, and P. Ferguson,
“Auto Code Generation for Onboard Space Object
Detection and Other Flight Software Applica‐
tions ‐ A Feasibility Study”. In: CASI ASTRO 2019,
vol. 1, Quebec, Canada, 2019, pp. 1–19.

[72] Z. Yu, Z. Su, Y. Yang, J. Liang, Y. Jiang, A. Cui,
W. Chang, and R. Wang, “Mercury: Instruction
Pipeline Aware Code Generation for Simulink
Models”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
vol. 41, no. 11, 2022, pp. 4504–4515, doi:
10.1109/TCAD.2022.3199967.

[73] P. Zhang, J. Gu, E. Milios, and P. Huynh, “Nav‐
igation with IMU/GPS/digital Compass with
Unscented Kalman Filter”. In: IEEE Inter-
national Conference Mechatronics and Automa-
tion, 2005, vol. 3, 2005, pp. 1497–1502, doi:
10.1109/ICMA.2005.1626777.

[74] Q. Zhang and W. Pei, “DSP Processer‐in‐the‐
Loop Tests Based on Automatic Code Genera‐
tion”, Inventions, vol. 7, no. 1, 2022, pp. 1–9, doi:
10.3390/inventions7010012.

[75] Y. Zhang, Y. Zhang, and Y. Zhang, “Using Auto‐
matic Code Generation to Accelerate Control
Algorithm Design for FPGAs”. In: 2022 2nd Inter-
national Conference on Algorithms, High Perfor-
mance Computing andArtiϔicial Intelligence, AHP-
CAI 2022, vol. 1, 2022, pp. 68–72, 10.1109/AHP‐
CAI57455.2022.10087457.

[76] K. Ćosić, I. Kopriva, T. Kostić, M. Slamić, and
M. Volarević, “Design and Implementation of
a Hardware‐in‐the‐Loop Simulator for a Semi‐
Automatic Guided Missile System”, Simulation
Practice and Theory, vol. 7, no. 2, 1999, pp. 107–
123, doi: 10.1016/S0928‐4869(98)00027‐5.

25

https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/it/2018/distributed-simulation-test-environment-for-rapid-prototyping-disterap.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/it/2018/distributed-simulation-test-environment-for-rapid-prototyping-disterap.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/it/2018/distributed-simulation-test-environment-for-rapid-prototyping-disterap.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/it/2018/distributed-simulation-test-environment-for-rapid-prototyping-disterap.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/it/2018/distributed-simulation-test-environment-for-rapid-prototyping-disterap.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/it/2018/distributed-simulation-test-environment-for-rapid-prototyping-disterap.pdf

	Introduction
	High-Speed Unmanned Aerial Vehicle Description
	Simulation Model Description
	Navigation Data Extrapolation
	Guidance Algorithm
	Firing Logic of the Lateral Thrusters
	Pulse Thrusters Assignment

	Automatic C Code Generation
	Model Build Options
	Code Verification Methodology

	Results and Discussion
	Conclusions and Future Work
	Appendix A - Mathematical model of the HSUAV
	Dynamic Equations of Motion
	Angular Orientation of the Vehicle
	Total External Loads
	Aerodynamic Loads
	Gravity Loads
	Main Solid Propellant Motor Loads
	Lateral Thrusters
	Mass and inertial properties

