
Abstract:

1. Introduction
Accurate perception of the position is essential in the

application of a mobile robot. In particular, when a mo-
bile robot is applied into autonomous tasks, it is required
to know precisely where it is in order to navigate suc-
cessfully to desired locations in its environment. This
problem is the so-called “the first-location problem” [1].
Theoretical work, practical work, and different appro-
aches on the subject have been reported, but it is still on
the cutting-edge of research directions in the field of
mobile robotics. Positioning of a mobile robot is the
foundation for other application areas, such as trajectory
planning [2], obstacle avoidance [3], and robot navi-
gation [4].

Interaction between the mobile robot and objects in
its surroundings is performed by using the interoceptive
and exteroceptive sensors mounted on the mobile robot.
To obtain the position of the mobile robot, many diffe-
rent sensors, systems, and techniques have been develo-
ped [5], [6], [7]. Traditionally, position feedback can be
achieved through odometry sensors. It is the most widely
used navigation method, since odometry provides good
short-term accuracy, is inexpensive, and allows very high
sampling rates. However, the fundamental idea of odo-
metry is the integration of incremental motion informa-
tion over time, which leads inevitably to the accumula-
tion of errors that cause large position errors and in-
crease proportionally with the distance traveled by the
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accuracy of the algorithms.
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robot [8]. Despite these limitations, most researchers
agree that odometry is an important part of a robot navi-
gation system, and that navigation tasks will be simpli-
fied if odometric accuracy can be improved [9], [10],
[11]. Sonar sensors are also popular perception systems
in mobile robotics. This kind of sensor has been used by
various researchers [12], [13], [14], primarily due to
their low cost and their ease of integration. Sonar sensors
are based on a time-of-flight principle using an ultraso-
nic wave. Over the past decade, much research has been
conducted investigating applicability in such areas as
world modeling and collision avoidance, position estima-
tion, and motion detection [15], [16], [17]. The major
drawback of sonar sensors is the poor angular resolution
due to the relatively large beam angle. In addition, the
distance and spatial resolutions of sonar sensors are limi-
ted. They require significant post processing of data to
provide accurate position updating [18]. As an alterna-
tive to the sonar sensors, the laser rangefinder is also
a time-of-flight sensor that achieves significant impro-
vements over the ultrasonic range sensor due to the use
of laser light instead of sound. In recent years, the laser
rangefinder has proved more popular in positioning mo-
bile robots [19] and [20]. This is due to the fact that the
laser rangefinder can provide dense data about the envi-
ronment, so it is possible to extract suitable features
from the reading of the laser rangefinder, and those fea-
tures can be used for positio-ning a robot [21]. Vision
systems are often used for recognition of landmarks in
the environment [4], [22]. They are frequently used in
a stereo vision head. Visual sensing provides a tremen-
dous amount of information about a robot's environment,
and it is potentially the most powerful source of infor-
mation among all the sensors used on robots to date
[23]. Due to the wealth of information, however, extrac-
tion of visual features for positioning is not an easy task
and this method is hard to use in a real time application.
Each sensor has its advantages and disadvantages. For
different mobile robot tasks, different sensors are used.
Sometimes, those sensors can be fused together to get
more highly accurate positions.

Many techniques and methods are used for unders-
tanding the environment from sensor readings. Different
solutions have been adopted in the robotics literature
[24], [25], [26], [27]. In general, there are two appro-
aches. One is the grid-based approach, and the other is
the feature-based approach. The grid-based approach
uses a 2D array to represent the environment. This low-
level grid-based approach proves to be very useful for
map building using ultrasonic sensors, because ultra-
sonic sensors have a large opening angle and their range
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data are seriously corrupted by reflection. The feature-
based approach represents the structure of the environ-
ment by geometrical primitives. They are represented by
a set of parameters describing their shape, their position
in the environment, and their position uncertainty. In
the feature-based approach, the laser rangefinder scans
are segmented into a set of features such as break points
(a break point is defined as when the laser sensor reading
is not continuous around it), corners or angular points
(an angular point is defined as a transition point from
one line to another line around which the data points are
continuous), line segments, etc. There is a substantial
body of previous research in the area of feature-based
positioning by laser rangefinders [28], [29]. In [30],
break points are used as the feature to position the
mobile robot, however, they cannot provide an accurate
position, because one pair of break points in separate
scans are not at the same point in the environment. Other
features such as corner points or line segments, have the
same problem. With the increase in the detection
distance and the decrease in the detection angle, errors
in the laser rangefinder increase dramatically. One error
model for the laser rangefinder in [1], the SP model, does
not consider uncertainty changing due to the detection
distance and the detection angle. To our knowledge,
there is no published work to date developing an efficient
method for positioning which takes into consideration of
the detection distance and the detection angle. How-
ever, fuzzy logic can facilitate to describe uncertainties,
such as big uncertainty, medium uncertainty, and small
uncertainty. That is the reason why fuzzy logic is used in
the paper to describe uncertainties of features.

The aim of this paper is to propose algorithms based
on fuzzy logic to position the iRobot B21r mobile robot,
which is equipped with a 180° scanning laser range-
finder and other sensors. The B21r mobile robot is ideal
for research and development across a broad range of
indoor robotics applications because it is easy to control
and has various types of sensors, including inertial sen-
sors, infrared sensors, tactile sensors, sonar sensors,
a scanning laser rangefinder, and a stereo camera. How-
ever, the limitations of these sensors make obtaining
a highly accurate position extremely challenging. In this
paper, readings from the laser rangefinder and the iner-
tial sensors will be fused together to get a precise posi-
tion. The novelties of this research are a new error model
for the laser rangefinder taking into consideration the
detection distance and the detection angle, a new con-
cept, the virtual angular point, and the position fusion
technique based on the weighted mean technique and
fuzzy uncertainty.

This paper is organized as follows. In Section 2, a no-
vel error dynamic model for the laser rangefinder is put
forward, including fuzzy-based error description for the
features. Section 3 gives feature extraction algorithms
and feature points pairing. Section 4 presents the posi-
tioning algorithms based on the weighted mean tech-
nique and fuzzy uncertainty. Section 5 details experi-
ments designed to verify the effectiveness and accuracy
of the method, and finally in Section 6 concluding re-
marks are discussed.

2. Laser rangefinder error model and Fuzzy
Based Uncertainty Description
Typically, the model of a laser rangefinder with uncer-

tainty regarding the detection distance and the scanning
angle can be shown in Fig. 1. The uncertainty associated
with the location of a 2D laser reading is represented, by
the covariance matrix of its perturbation vector, where
a zero-mean Gaussian error distribution is assumed [1].
In general, a scanning laser rangefinder collects scans,
i.e., sets of m readings , where represents the
detection distance to an object placed in the way of the
laser beam in the direction determined by a scanning
angle . The scanning angle takes m discrete values
ranging from 0 to 180 degrees, so that , and

, and the indices are additive
modulo .

Let denote the angle between axis and the target
plane (as shown in Fig. 2), and denote the detection
angle (which is defined as the angle between the laser
beam and the target plane, as shown in Fig. 2), so that we
have, , which can be shown in Fig. 2. will
include large uncertainty at small values , that is, at
sharp angles of observation [31].

i
m

x

Fig. 1. Laser rangefinder model with uncertainty along to
the detection angle and the detection distance.

Fig. 2. The detection angle in the ith scan.
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as seen in Fig. 4. First, when the detection distance
increases, the uncertainty of the laser rangefinder will
increase accordingly. Second, when the detection angle
is far from 90°, the readings of the laser rangefinder will
contain large uncertainty for the discrete scanning. The
uncertainty associated with the laser rangefinder is
defined by:

(1)

The relationship of the above equation is hardly
represented by mathematic formulas, so fuzzy logic could
be the best to represent this kind of uncertainty. In this
paper, fuzzy logic is used to describe the uncertainty for
the point, the virtual angular point, and the line feature
(the line feature is defined as a sequence of points tra-
cing out a line in the environment). Therefore, each
feature is evaluated by fuzzy uncertainty. When the posi-
tions are fused, fuzzy uncertainty will be used as weights,
namely, less uncertainty will have larger weight. By this
way, the accuracy of position will be improved.

Uncertainty of each point is determined by the fuzzy
logic system with two inputs and one output. The two in-
puts are the detection distance and the detection angle,
and the one output is the uncertainty associated with
this point.

The reading matrix from a laser rangefinder is given by:

(2)

The detection distance between the laser rangefinder
and the object can be obtained from the laser rangefinder
reading directly. That is .

The detection angle is formulated as:

(3)

The membership functions of those three variables,
the detection distance, the detection angle, and the

Fig. 4. Laser rangefinder scans the object, and there is
uncertainty in laser reading (red area).

2.2. Fuzzy-Based Uncertainty Description
Point Feature

for the

In the feature-based approach, features are extracted
from the laser rangefinder reading. These features could
be line segments, corners, break points, etc. Fig. 3 gives
an example of a 180° scanning of the gym at Sexton
Campus. From this figure we can determine that laser
rangefinder readings can be used to represent an indoor
environment in the form of polygonal shapes.

It is obvious that break points, angular points, vir-
tual angular points, and line segments can be used as
features.

In an indoor environment, angular points could be
the wall corner or the interfaces of objects with the wall.
A break point can be defined as a point before or after
a gap in the sequence of data points. Break points may
locate at different positions in different laser scan when
the robot moves. However, because of the uncertainty in
the laser rangefinder, the same break points cannot be
detected by the different scanning data; even a break
point detected by the first scan cannot be detected by
the second scan. As a result, break points can only pro-
vide rough information. The angular points have the sa-
me problem as the break points.

The virtual angular point refers to an intersectional
point of two arbitrary lines. Virtual angular points do not
exist in the real world and cannot be detected by the laser
rangefinder. In general, we can get highly accurate
slopes of line segments instead of the starting point, the
ending point, and the length. More importantly, we can
obtain some points with the short detection distance and
the big detection angle, that is, the uncertainties in
those points are very small, but they might only belong to
one section of other feature segments, enabling us to
continue using them for positioning in our algorithms.
Using virtual angular points, we can get more accurate
features to position a mobile robot. We know that the line
segments have much more exact tangents than point
features, due to a line including more points.

Because of light refection noise and other variables,
some points scanned by a laser rangefinder, which do not
exhibit a local alignment within a tolerance, will be
removed from the raw sensed data [32]. However, since
the laser rangefinder has uncertainty itself as mentioned
at the beginning of this section, there are two main
reasons that will affect the laser rangefinder's accuracy,

2.1. A Novel 2D Laser Rangefinder Error Model

Fig. 3. Features in an 180° scanning set of the laser
rangefinder reading.
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uncertainty, are defined by triangular functions, because
they only need vertex points to store them and thus to
minimize the computer storage, and the sum of the trian-
gular functions is equal to 1 that will simplify the ex-
pression. The membership functions are shown in Fig. 5,
Fig. 6, and Fig. 7, respectively.

The presented fuzzy logic decision system uses 15
rules, listed in Table 1. The proposed fuzzy logic decision
system adopts the Mamdani-style inference engine and
the max-min method for defuzzification.

Table 1. The fuzzy rules for accuracy estimation.

Therefore, the output of the uncertainty associated

Fig. 5. The membership function of the detection angle.

Fig. 6. The membership function of the detection distance.

Fig. 7. Points Uncertainty.

with the point can be given by:

(4)

In general, some methods are used for extracting the
line feature from the laser rangefinder reading. After this
processing, a series of points construct one line. The
accuracy description regarding the raw points from the
laser rangefinder reading can be obtained by the method
mentioned in the above subsection. Still the fuzzy logic
system is designed for describing the uncertainty of the
line feature.

Generally, one line feature in a 2D environment can
be expressed by:

(5)

There are two inputs, which are the mean of the un-
certainty of points which construct the line feature, and
the mean of distances between those points and the
corresponding line feature.

The first input can be given by:

(6)

is the number of points to construct the line.
The distance from a point to a line can be given by:

(7)

Therefore, the second input can be given by:

(8)

The membership functions of two input variables are
defined by triangular functions by the same reasons men-
tioned in the above subsection, shown in Fig. 8 and
Fig. 9, respectively. The membership function of the
output is shown in Fig. 7.

2.3. Fuzzy-Based Uncertainty Description for
the Line Feature

m1

Fig. 8. The membership function of the mean of points
accuracy.
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Fig. 9. The membership function of the mean of the
distance between the point and the line.

Table 2. The fuzzy rules for the line feature accuracy
estimation.

The presented fuzzy decision system uses nine rules,
listed in Table 2.

By the same inference engine and defuzzification, the
output of uncertainty can be given by:

(9)

According to the definition of the virtual angular
point, we know that two arbitrary lines can form one vir-
tual angular point. So, the accuracy of virtual angular
points depends on the accuracy of those two lines.
Another property of such a point feature is that the small
variation of the tangent of one line causes a big distance
error if the point is far away from the central point of the
line. It means that if the virtual angular point is too far
away from the line segments, this point may be greatly
inaccurate. Therefore, the uncertainty of the virtual an-
gular points depends on three factors, two lines' uncer-
tainty, and the distance between the virtual angular
point and the center points of the line segments.

The first input and the second input can be obtained
through the above subsection directly, denoted by
and , respectively.

The third input is the mean of the distances between
the virtual angular point and the center points of two line
segments, which form the virtual angular point.

Let denote the virtual angular point, and
, denote the center points of two line seg-

ments, respectively, then we have:

2.4. Fuzzy-Based Uncertainty Description for the
Virtual Angular Points Feature

f

(x ; y ) x
y x y
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v

1

fL

v c

c c c

2

1

1 2 2
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(10)

The membership functions of the input variables are
defined by triangular functions, as shown in Fig. 7 and
Fig.10, respectively. The membership function of the
output is shown in Fig. 7.

The presented fuzzy decision system uses 45 rules,
listed in Table 3.

By the same inference engine and defuzzification, the
output of uncertainty can be given by:

Fig. 10. The membership function of the mean of the
distance between the point and the line.

Table 3. The fuzzy rules for the virtual angular point
accuracy estimation.

(11)

(12)
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3. Feature extraction and data association
The procedure for the mobile robot's feature extrac-

tion and points pairing includes the laser rangefinder
reading filtering, which removes erroneous points and
assigns the accuracy estimation for each point, finding
break points, clustering, which classifies the points into
several clusters, finding angular points, line feature ex-
tracting, finding virtual angular points, and points pai-
ring, which is used for the positioning algorithm.

Through the discussion of the above section, we know
that the accuracy of laser rangefinder readings depends
mainly on the detection distance, the detection angle,
and the uncertainty associated with the sensor itself.
Before the laser rangefinder reading is processed, it needs
to remove some erroneous points, which have a very sharp
detection angle. Assume that a point has a detection
angle .The rule for filtering is given by:

If , then is an erroneous point, this point
needs to be removed.

where, is the threshold for the detection angle, we
choose 22.5° in the paper. At the same time, as illu-
strated in Equation 4, each point will be assigned an un-
certainty value in terms of the detection distance and the
detection angle based on fuzzy logic.

Generally, in a total of 180 points of laser rangefinder
reading per scan, break points are those points satisfying
the following conditions.

(13)

Where, ; are the threshold of the distance between
two points.

After break points are detected, the scan is broken at
those points, thereby finding occlusions. The starting
point and the sending point in one cluster should be break
points. Line segments and angular points are classified
into different clusters.

Assume the current point needs to be checked. The
angular points can be formulated as:

(14)

Where, is the angle between and , and is
the threshold of such an angle.

Line features are selected by determining the best fit
for all points within the clustering segmented groups.
This is accomplished in two steps: a) the least squares line
fitting of each segmented group within a cluster, and b)

3.1. Filtering

3.2. Finding Break Points

3.3. Clustering

3.4. Finding Angular Points

3.5. Line Feature Extraction

T T1 2

the computation of segment endpoints as the intersec-
tion points with neighboring line segments. The final re-
sult of this process is a set of line features (short ones in
the case of non-structured environments) that approxi-
mate the contour of the surrounding obstacles.

Arbitrarily, two lines with different tangents can form
a virtual angular point, and those two lines are given by:

(15)

Therefore, the intersectional point of those two lines
can be obtained by:

(16)

However, the number of virtual angular points will in-
crease dramatically as they appear on the intersection of
every straight line in an environment with more straight
edges. For this situation, we can still get good features of
virtual angular points by fuzzy-based uncertainty descrip-
tion. For example, if the uncertainty for a virtual angular
point is too big, this point will be removed. By this me-
thod, the number of virtual angular points will be de-
creased. Then, use well-chosen features to position the
mobile robot by the weighted mean technique.

Assume points in the ith scan and the
scan are , , respectively, where

, which need to pair, and the increment of the
inertial sensors is . The strategy of pairing is
first to map one point in the ith scan to the scan
with the parameters obtained from the inertial sensors,
second to find the point in the scan that is
closest to this mapping point. If there is only one such
point, then those two points are matched. We use the
following homogenous transformation to map one point
in the scan into the scan:

(17)

Let denote the distance between ,
and , we have:

(18)

Therefore, if , then and
are one pair of points in the ith scan and scan,
where is the threshold of the distance.

Any two pairs of points can position the robot. Use
the following formulas to illustrate this point, shown in

3.6. Finding Virtual Angular Points

3.7. Data Association
(i + )th

(i + )th

(i + )th

ith (i + )

d

d < T
(i + )th

T

1

1

1

1

1

4. Feature-based positioning for mobile
robots
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Fig. 11. The expression of the transform matrix in the
form of the homogeneous matrix is given by:

(19)

So that the relationship between one pair of points
can be given by:

(20)

The relationship between another pair of points can
be obtained in the same manner, so we have:

(21)

So that:

(22)

Fig. 11. Vector transformation with the translation (a; b)
and the rotation .

According to Equation 4, each point of break points
and angular points has its fuzzy uncertainty description.
The fuzzy uncertainty description for virtual angular
points is given by Equation 11, which is determined by
Equation 9. Assume that after points pairing, there are
pairs of break points, angular points, and virtual angular
points, denoted by , and fuzzy uncertainty
associated with those points denoted by and , so
that we can get the position from this pair of the
points, and the accuracy associated with the ith position
is given by:

(23)

Therefore, the position obtained from those pairs
of points is denoted by . Total number of posi-
tions by paired points is denoted by . Then, the final
position is fused by:

(24)

The iRobot B21r mobile robot is an indoor mobile
robot system developed by iRobot Corporation. The mo-
bile robot possesses a synchronized drive mode with four
steer- and drive-wheels, achieving a maximum speed of
1m/s. An on-board host computer implements the con-
trol software required to control both the internal navi-
gation parameters of the vehicle and the interaction of
the mobile robot with its surrounding environment using
its exteroceptive sensors. The mobile robot is equipped
with incremental encoders which return the rotation an-
gle of the wheel, from which an estimation of the relative
displacement of the vehicle can be obtained. The exte-
roceptive sensors mounted on the robot are: a sonar ring,
formed by 48 Polaroid ultrasonic sensors, which return
distance information from the surrounding obstacles;
a binocular stereo rig, formed by two off-the-shelf CCD
cameras; and a laser rangefinder which delivers accurate,
low noise range information from an actively scanned
infrared laser beam.

The mobile robot was programmed to follow a circle in
the gym at Sexton Campus, which is shown in Fig. 12.

i

f f
ith

m

i i1 2

2

5. Experiments

Fig. 12. iRobot running in the gym.
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Why we choose a circle curve is that it is a typical and
effective curve to reflect the slippage and integration
drifting phenomena in a mobile robot. Suppose that the
conditions of the floor are the same everywhere. We de-
fine the starting point and measure the ending point.
Because of the evenly slippery floor, the actual path of
the mobile robot is a spiral curve. Therefore, by the star-
ting point and the ending point, the actual path can be
calculated.

The laser rangefinder reading is filtered, so that in-
correct points are removed and other points are assigned
uncertainty values. The filtering result of the 25 scan is
shown in Fig 13. Based on the break points finding
algorithms, the break points in the 25 scan are found
and shown in Fig. 14. Fig. 15 shows the angular points
finding result in the 25 scan. The 25 scan is classified
into 10 clusters, as shown in Fig. 16. Line features, which
are shown in Fig. 17, are found in the 25 scan. Here,
only lines which have at least four points are picked,
because they are useful to decrease the complexity in
finding the virtual angular points. Virtual angular points
are found and shown in Fig. 18. Finally, the position
estimation is calculated, shown in Fig. 19 and Fig. 20.
From this figure, in the short distance, the inertial
sensors can give high accuracy, and the position given by
the inertial sensors is better than that of the algorithms
in the paper, but with the increasing in distance, the
inertial sensors contain large errors in the position, so
that the algorithms in the paper is much better than the
odometry method.

th

th

th th

th

Fig. 13. Data filtering at 25 scan.

Fig. 14. Break points finding at 25 scan.

th

th

Fig. 15. Angular points finding at 25 scan.

Fig. 16. Data clustering.

Fig. 17. Line features extracting at the 25 scanning.

Fig. 18. Virtual angular points finding at the 25 scanning.
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Fig. 19. The Comparison of the real trajectory, inertial
sensor reading, and fuzzy-based positioning.

Fig. 20. The Comparison of the real trajectory, inertial
sensor reading, and fuzzy-based positioning.

6. Conclusion and future work
In this paper, the proposed research built a new dyna-

mic error model with consideration of the detection dis-
tance and the detection angle. A new concept, “virtual
angular point”, was defined and used for positioning.
Fuzzy-based weight mean position fusion was presented.
The procedure for positioning was put forward. The pro-
posed research achieved significant improvement for the
mobile robot positioning. The procedure of our positio-
ning can be discussed as follows.

1. Before processing the laser rangefinder reading, it is
important to filter data. It can decrease complexity
of the whole positioning, and improve accuracy.
Through fuzzy-based uncertainty descriptions, it is
easy and efficient to present the uncertainty asso-
ciated with laser measurement.

2. Virtual angular points have higher accuracy than
break points and angular points. It is an innovative
method to map the two different coordinate frames.

3. During the phase of fusing break points, angular
points, and virtual angular points, the fuzzy method
was implemented to decide weighted coefficients for
corresponding data, then to obtain the weighted
mean position and orientation of the mobile robot.
This intuitive method can be easily understood, and
the uncertainty is simple to express.

Although the experiment setting is a little simple, the
complicated environment and obstacles in the envi-
ronment will be considered in the future work.
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