
Abstract:

1. Introduction
Recently, emotions are introduced into intelligence

robots [1]. An expression of the emotion has advanta-
geous effects on a communication between a human and
a robot, as well as behaviors of the robot. The communi-
cation through the expression of the emotions is a non-
verbal and intuitive for the human. For example, internal
states of the robot, which are not usually visualized, can
be communicated to the human by using facial expres-
sions based on the emotions that the robot generates. As
conventional methods for the expression of the emotion,
artificial intelligence models have emulated some emo-
tions of the robots [2], [3]. However, the expression of
the emotion must be programmed with defined inputs
and certain situations in advance, and it is not an emer-
gence as a result of interactions between unknown envi-
ronments. Therefore, a novel model, which can generate
wide variety of emotions by learning in the unknown en-
vironments, has growing requirements to improve the
human robot interaction.

Emotional-expression Model of the Amygdala (EMA)
has been proposed as an artificial neural network of the
amygdala from a viewpoint of an engineering approach
[4]. EMA has been established based on neuroscience
findings of the amygdala that is an emotional learning
system in the brain [5]. The learning of the emotions by
EMA is interactively achieved by both recognition and
a classical conditioning of inputs from environments.
Furthermore, EMA is suitable for applications to the
robot, because it has superior recognition abilities com-
pared to other models of the emotion [6], [7].

In this paper, we apply EMA to the expression of the

In this paper, we proposed an emotional expression
system as a brain-inspired system. The emotional expres-
sion was achieved by an Emotional expression Model of the
Amygdala (EMA), which was an engineering model inspired
by an emotional learning in the brain. EMA can realize both
recognition of sensory inputs and a classical conditioning
of emotional inputs. Furthermore, a specific hardware of
EMA was developed with a massively parallel architecture
by using an FPGA, and achieved a calculation speed that is
over 20 times faster than an embedded general-purpose
computer. Finally, we confirmed an effectiveness of a hu-
man-robot interaction with the emotions, which were gene-
rated by the proposed emotional expression system.
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emotion for an autonomous mobile robot as a brain-in-
spired system. First, we demonstrate an effectiveness of
EMA using a robot simulator. Furthermore, we develop an
accelerator of EMA, which allows real-time interactions,
using FPGA. Finally, we implement EMA in the robot as an
emotional expression system including sensors, expres-
sion-devices and the accelerator of EMA. An effectiveness
of the developed system is confirmed by an interactive
training of the expression of the emotion between the
human and the robot.

A limbic system of the brain is an information proces-
sing system involved in an emotion and a memory. The
amygdala, which is a part of the limbic system, involves
in the emotional learning. The amygdala receives various
sensory stimuli from an inside and an outside of the body

a sensory thalamus [5]. The sensory stimuli are inte-
grated in a lateral nucleus of the amygdala (LA) and are
localized and recognized based on the characteristics.
Furthermore, a value of the stimulus is evaluated for cor-
responding emotions in a central nucleus of the amyg-
dala (CE). As a consequence, emotional reactions, such as
freezing and stress-hormone release, arise in whole of
the body as emotional responses.

A relationship between the sensory stimulus and the
emotional responses is acquired by a classical conditio-
ning by using the sensory stimulus and the emotional
stimulus [8]. The sensory stimulus, such as an auditory
stimulus, acts as a conditioned stimulus (CS), and is na-
turally irrelevant to the emotional responses. On the ot-
her hand, the emotional stimulus, such as an electrical
shock, is called an unconditioned stimulus (US) since the
stimulus potentially generates the emotional responses.
The classical conditioning is achieved by simultaneously
presenting CS and US. After the conditioning, the emo-
tional responses are induced by observing CS only. The
amygdala is related to the conditioning with a fear emo-
tion in particular.

EMA emulates two essential functions in complex and
diverse functions of the amygdala, recognition of the
sensory stimulus and conditioning to the emotional res-
ponse. Two functions are absolutely imperative in the
emotional human robot interaction. It is preferable that
the recognition system is self-organized thorough the
interaction. Furthermore, the recognition should be

2. Emotional-expression model
of the amygdala

2.1. Amygdala

2.2. Architecture of EMA
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adaptive to environmental changes. In order to realize
interactive and adaptive recognition system, we adopted
Self-Organizing Map (SOM) [9] and its adaptive learning
rule in EMA.

The EMA architecture to satisfy two functions is
inspired by the anatomical findings of the amygdala. The
architecture is three-layers to integrate the sensory sti-
muli shown in Fig. 1. The sensory input layer has several
input units, and corresponds to an entrance area of the
amygdala including the sensory thalamus. The LA layer
has a number of competitive units, and receives the
sensory stimulus. The competitive units are arranged in
a two-dimensional array, and can extract characteristics
of the sensory stimulus as a feature map in a self-orga-
nizing manner. Finally, emotional values, which repre-
sent strength of the emotional responses, are evaluated
in the CE layer. Several types of emotions, such as fear,
pleasure and surprise, are available in EMA although the
amygdala is specifically related to the fear emotion.

Let be an input vec-
tor that represents the sensory stimulus at time step ,
and be a reference
vector of the unit on the LA layer. The best matching
unit (BMU) for the sensory stimulus is selected by the
following equation

(1)

EMA regards the BMU as a classified CS of the sensory
stimulus. The reference vectors are updated by the fol-
lowing equations.

(2)

(3)

2.3. Algorithm of EMA
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Here, means a neighborhood function and
means a distance function between the

unit and BMU on the LA layer. and are the
learning ratio and the neighboring width at time step ,
respectively. These parameters in EMA are determined ba-
sed on an adaptation degree to the sensory stimulus,
because an adaptive learning is significant for an interac-
tive learning between the human and the robot. The
adaptive learning is achieved by the following equations
[11].

(4)

(5)

Here, is the maximum error until time step
from the initial state, means a normalized error as
the adaptive degree. and are the maximum and
the minimum neighboring widths, respectively. These
equations mean that the learning ratio and the neigh-
boring width increase when the normalized error is large,
but these decrease when the normalized error is small.

Furthermore, a relationship between the sensory sti-
mulus and the emotional stimulus is acquired by using
a learning model of the classical conditioning [10].

Let be an input vec-
tor that represents strength of the emotional stimulus,

be an output vector of
the emotional value that represents strength of the gene-
rated emotional responses at the time step , where the
suffix means an index corresponding to a kind of the
emotion. The emotional value is calculated by the follo-
wing equations, when the sensory stimulus is presented.
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Fig. 1. Architecture of EMA. EMA is inspired by anatomical findings of the amygdala and consists of three layers, the sensory
input layer, the LA layer and the CE layer.
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Strength of the emotional stimuli is represented as
. In this simulation, the parameters of EMA

are as follows; the number of the LA unit is 64 (8 x 8),
=1.0, =0.1, =0.3.

At the beginning, a performance of the stimulus reco-
gnition was confirmed. We randomly presented the color
ball to the robot. Fig. 3(a) shows the feature map of EMA
after presenting 1000 times. In the feature map, each co-
lor patch shows features of the sensory stimulus that are
represented by the reference vector of the LA unit. The
neighboring LA units have similar feature, and the distant
LA units have different features, for For BMUR, BMUG and
BMUB, R, G and B are subfix. Although uniformed feature
map was obtained by the randomly sensory stimuli, we
presented red-biased stimuli in order to confirm effective-
ness of the adaptive learning rule, additionally 500 times.
The feature map was changed and specialized in red featu-
re by additional stimulus, as shown in Fig. 3(b). The featu-
re map is updated depending on the adaptive degree to
the sensory stimulus. Thus, the recognition of EMA works
well even if the environment is dynamically changed, al-
though the conventional model [11] cannot accommo-
date.

Next, the classical conditioning experiment was

E( )=( )t E , Ep f

max minó ó ó

3.2. Recognition of the sensory stimulus

3.3. Emotional conditioning

Fig. 3. A feature map in EMA obtained by the stimulus reco-
gnition process. Each color patch represents the reference
vector of unit on the LA layer. (a) The obtained map by pre-
senting 1000 random stimuli. (b) The map adapted addi-
tional stimuli (red color).

Fig. 4. Emotional values in the basic classical conditioning
experiment. (a) The emotional value to fear emotion. (b)
The emotional value to pleasure emotion. Emotional values
represent strength of emotional responses to the sensory
stimulus. EMA can achieve the acquisition and the extinc-
tion for more than one emotion.

the sensory stimulus and
is an emotional weight of the unit. The emo-

tional weight is updated by the following equation.

. (8)

Here, is a conditioning ratio. The algorithm of EMA
is summarized two computational processes; (1) the sti-
mulus recognition process and (2) the conditioning pro-
cess. Recognition of the sensory stimulus can be achie-
ved in the stimulus recognition process. In parallel,
a prediction and an update of the emotional value can be
achieved in the conditioning process.

In application such as human robot interaction, an
advantage of EMA over other classical conditioning mo-
dels, for example TD model [11], is the self-organizing
and adaptive recognition of the sensory stimulus (See
[4]). We confirm an effectiveness of EMA by software
simulations and experiments with developed hardware of
EMA in the following section.
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3. Computational simulations

An experiment of the expression of the emotion for
a dog-like robot is performed by computational simula-
tions. A simulation environment is created by a robotics
simulator “Webots” [12], and is shown in Fig. 2. The simu-
lated robot (SONY AIBO ERS210) in the environment has
a vision sensor and a touch sensor. The robot can detect
a color intensity of the front ball as the sensory stimulus
by using the vision sensor. Furthermore the robot some-
times receives tactual stimulus such as hitting and gentle
stroking from the environment, when the sensory stimu-
lus is presented. Here, we assume that the tactual stimu-
lus induces a corresponding emotional response to the ro-
bot as the emotional stimulus. EMA implemented in the
robot performs the recognition and the conditioning for
the emotional learning like the amygdala.

The sensory stimulus is represented as a three-dimen-
sional vector , where , and are
color intensities of red, green and blue, respectively.

3.1. Simulation environment

Fig. 2. A simulation environment. The robot has a vision
sensor to detect the sensory stimulus and has a touch sen-
sor to detect the emotional stimulus. The sensory stimulus
is a color of ball objects and the emotional stimulus is
a tactual sense of the robot.

x
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performed by simultaneously presenting both the sensory
stimulus and the emotional stimulus. The emotional sti-
mulus, , was associated with the sensory stimu-
lus, , every 20 steps in the first 500 steps.
In the next 500 steps, the emotional stimulus, ,
was associated with the same sensory stimulus every 20
steps. Fig. 4 shows the emotional values in the learning
steps, where and correspond to fear and pleasure
emotions, respectively. Emotional values were acquired
by the classical conditioning. As a result, the emotional
responses to the sensory stimulus were generated without
the emotional stimulus. In the last of the conditioning,
the emotional value ( ) was eventually lost because the
corresponding emotional stimulus was not presented.
Thus, the “acquisition” and the “extinction”, which are
a basic principle of the classical conditioning, can be
achieved in EMA.

In this simulation, it was confirmed that the robot
with EMA was able to generate the emotions by a combi-
nation of the recognition and the conditioning. This con-
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tribution by EMA makes behaviors of robots more intel-
ligent, and the human robot interaction becomes natural
and interactive.

To realize real-time processing of EMA in robotics appli-
cations, we proposed specific hardware architecture of
EMA in which a hardware-oriented algorithm is emplo-
yed. The proposed EMA hardware (EMAHW) was develo-
ped based on a massively parallel architecture as well as
conventional SOM hardware [14], [15] because the algo-
rithm of EMA was based on SOM. Fig. 5 shows the mas-
sively parallel architecture of EMAHW including 81 units.
The architecture is achieved by several local circuits and
one global circuit. Each local circuit corresponds to one
LA unit, and has a memory of the reference vector and the
emotional vector. The global circuit calculates following
processes; finding BMU, adapting the learning parame-

4. FPGA implementation of EMA

4.1. Architecture of EMA hardware
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Fig. 6. A block diagram of the emotional expression system including the digital hardware of EMA, the emotional sensors and
the emotional expression devices.

Fig. 5. A massively parallel architecture of the EMA hard-ware. The EMA hardware consists of several local circuits and one global
circuit.
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ters, calculating the emotional value and conditioning.
Furthermore, the learning parameters (Eq. (3) and Eq.
(4)) were modified in EMAHW as follows;

, (9)

. (10)

These learning parameters allow to EMAHW use shift
register as a substitute for multiplier. Thus, it drastically
reduces a circuit area and calculation cost.

EMAHW was implemented on FPGA (Xilinx Spartan-3E,
sc3s1600E) with 81 LA units and 8-bit accuracy. EMAHW
calculated at clock frequency up to 50 MHz. A perfor-
mance of EMAHW was estimated at 632.8 MCUPS (Million
Connection Update Per Second), when the reference vec-
tors were three dimensions and the emotional weights
were two dimensions. For comparison, a performance of
a general-purpose PC (Intel Core 2 Duo, 2.66GHz) is 43.2
MCUPS in the original algorithm.

Furthermore, a performance of EMAHW was confirmed
by comparison with embedded processors that were
available an autonomous mobile robot. A benchmark test
using three-dimensional 1000 sensory stimuli was perfor-
med by each processor. Table 1 shows a comparative re-
sult. The calculation speed of the EMAHW was twenty-
times or more as fast as the portable PC in spite of the
lowest clock frequency.

To verify an effectiveness of EMA in the human robot
interaction, an emotional expression system was imple-
mented in an autonomous mobile robot “WITH” [16].
A block diagram of the emotional expression system is
shown in Fig. 6, and the robot including the sensors and
the devices is shown in Fig. 7.

The emotional sensors include a CMOS camera to cap-
ture front images of the robot, and a capacitance sensor
array to detect tactual senses from the human to the ro-
bot. The main controller receives the captured image
from the CMOS camera, and sends an averaged the color
value as the sensory stimulus to EMAHW. Furthermore,
the main controller estimates tactile information, hitting
or gentle stroking, by using the number of responded
sensors, and sends the information as the emotional
stimulus to EMAHW. EMAHW calculates the emotional
value by using the sensory and emotional stimulus
provided. The emotional-expression devices were develo-
ped based on an ear and a tail of a dog in order to commu-
nicate the robot's emotions to human. The dog is the

4.2. Performance of EMA hardware

5.1. Robot with emotional expression system

5. Human robot interaction with EMA

most famous pet, and their emotional expressions have
been investigated in detail. The robot’s emotions, which
are generated by EMAHW, are expressed by simple move-
ments of the emotional-expression devices. For example,
the ear is laid back and the tail is wagged in small mo-
tions, when the robot is feeling a fear emotion. In addi-
tion, pleasure, confusion and attention emotions have
been elaborated.

Fig. 7. The robot “WITH” equipped the emotional expres-
sion system.

Fig. 8. The experimental results of the human robot inter-
action. Here, the colored marker is the sensory stimulus as
CS and the touch to the robot is the emotional stimulus as
US. (a) A scene that the human is training the robot with
the red maker and gentle stroking. (b) A scene that the
robot is expressing the pleasure emotion to the only red
marker. (c) The feature map obtained by the interaction.
(d) Emotional values acquired by the interaction.
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Table 1. A comparison of calculation time to benchmark test between EMAHW and other embedded processor.
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5.2. Experiment in human robot interaction

ACKNOWLEDGMENTS

The emotional expression system including EMAHW
was implemented in the robot as a robot’s amygdala sys-
tem. As a result, the robot got to recognize the sensory
stimulus from the environment, and to generate the emo-
tional value and the expression of the emotion. The hu-
man robot interaction was perfumed in the real environ-
ment. In the interaction, the human as a trainer presen-
ted a colored-marker as the sensory stimulus, and tou-
ched with one’s hands as the emotional stimulus to the
robot. Here, the sensory stimulus as CS is a presentation
of colored-marker, and the emotional stimulus as US is
a touch of the robot with gentle stroking or hitting. At
the begging, the robot unconditionally responded using
the specific emotion to the touch, but the colored-marker
did not induce any emotions.

Fig. 8 (a) shows a scene that the human was training
the robot with the red marker and the gentle stroking. As
the interaction was repeated, the robot became to ex-
press the emotion to the red marker only. Fig. 8 (b) shows
a scene that the robot was expressing pleasure emotion
using the tail wagging to the red marker without the tou-
ches after the training. Fig. 8 (c) shows the obtained fea-
ture map in EMAHW. The feature map preserves the
topology of the sensory stimulus as well as the result of
the computational simulation. Fig. 8 (d) shows the emo-
tional value corresponding to the interaction step. The
red and blue lines represent the emotional value of fear
and pleasure emotion, respectively. In the real environ-
ment, the acquisition and the extinction can be succes-
sfully achieved.

In the human robot interaction experiment, the robot
recognized the sensory stimulus, and predicted the emo-
tional value as well as animals. The emotional expression
of the robot makes the interaction to the human more
intelligent and human-friendly.

In this paper, we implemented EMA in the simulated
and real robot in order to realize the expression of the
emotions from the interaction. The expression of the
emotions can be achieved by the recognition of the sen-
sory stimulus and the classical conditioning in EMA. Fur-
thermore, we proposed the emotional expression system
including the accelerator of EMA. The EMA hardware has
the computational ability, which is 20 times or more fast
than other embedded processors. The human robot inter-
action with the expression of the emotion can be achie-
ved in simulated and real environment. In the future
work, a system that estimates a stimulus involving the
expression of the emotion by consideration of internal
and contextual status of the robot is needed as an exten-
sion of EMA. Then, we believe that the brain inspired sys-
tem will achieve a breakthrough in the human robot
interaction.

6. Conclusion
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