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Abstract:
In this study, we explore the implications of dataset
limitations in semantic knowledge‐driven machine trans‐
lation (MT) for intelligent virtual assistants (IVA). Our
approach diverges from traditional single‐best transla‐
tion techniques, utilizing a multi‐variant MTmethod that
generates multiple valid translations per input sentence
through a constrained beam search. Thismethod extends
beyond the typical constraints of specific verb ontologies,
embedding within a broader semantic knowledge frame‐
work.

We evaluate the performance of multi‐variant MT
models in translating training sets for Natural Language
Understanding (NLU) models. These models are applied
to semantically diverse datasets, including a detailed
evaluation using the standard MultiATIS++ dataset. The
results from this evaluation indicate that while multi‐
variant MTmethod is promising, its impact on improving
intent classification (IC) accuracy is limited when applied
to conventional datasets such as MultiATIS++. However,
our findings underscore that the effectiveness of multi‐
variant translation is closely associated with the diversity
and suitability of the datasets utilized.

Finally, we provide an in‐depth analysis focused on
generating variant‐aware NLU datasets. This analysis
aims to offer guidance on enhancing NLUmodels through
semantically rich and variant‐sensitive datasets, maxi‐
mizing the advantages of multi‐variant MT.

Keywords: machine translation, intelligent virtual assis‐
tants, natural language understanding

1. Introduction
Multilingual natural language understanding

(NLU) models are a major focus in natural language
processing (NLP) as they enable virtual assistants to
manage multiple languages. However, the scarcity
of multilingual training data often leads to under‐
representation of some languages. While the manual
translation of training sentences can address this
problem, it is a time‐consuming and costly process
prone to errors and ambiguities that can compromise
model quality. Moreover, manual translation struggles
to adapt to language changes or the introduction of
new languages to the virtual assistant.

In this context, using machine translation (MT)
systems as a source of translations seems to be an
attractive alternative for acquiring multilingual learn‐
ing data. Creating multilingual NLU models by trans‐
lating a learning sentence into multiple languages
using MT models seems possible and promising.

MT systems, used to generate sentences for train‐
ing NLU models, should produce multiple correct
translation variants. This is crucial as languages often
have numerous grammatical forms and ways of con‐
veying information. For instance, English has vari‐
ous verb forms, such as regular, irregular, and modal
verbs, with potentially different translations in other
languages. If an MT system generates only one trans‐
lation variant, theNLUmodelmight not learn to recog‐
nize others, compromising the model’s quality. Hence,
MT systems should create multiple accurate transla‐
tion variants to cover all possible patterns, enhancing
the performance of NLU models.

Figure 1 illustrates the schema of the MT sys‐
tem discussed in this article. Source utterances are
translated to the target language with MT system
that uses verb ontology. The resulting translations
exhibit extensive verb coverage, and improvements in
the NLU model can be observed when the evaluation
dataset encompasses multiple variants.

In the early stages of machine learning, the com‐
mon view in the ϐield was that enhancing MTwith lin‐
guistic resources, such as dictionaries, was not effec‐
tive.

MTVERB
ONT.

INPUT

VARIANT1 VARIANT2 VARIANT3

NLU1 NLU2

Figure 1. Schema of NLU training comparing
single‐variant MT with multivariant MT utilizing verb
ontology for enhanced performance
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This view emerged despite numerous initial explo‐
rations into the integration of these resources. How‐
ever, in this article, we challenge this notion, propos‐
ing that the effectiveness of augmenting MT with lin‐
guistic techniques is highly dependent on the dataset
and speciϐic tasks utilized. We have designed a series
of experiments to demonstrate that incorporating a
verb‐ontology can indeed enhance MT performance
in downstream tasks. In tasks that are particularly
sensitive to verb variation, we aim to show that the
augmentation ofMTwith linguistic resources remains
a viable and potent strategy.

2. Related Work
This article refers to earlymachine learning efforts

to introduce linguistic resources to improve the qual‐
ity of NLU systems.Moneglia [18] created the ontology
of action verbs to improve theperformanceofNLUand
MT systems.

Thisworkalso relates to themethodsof generating
multiple correct translations. Fomicheva et al. [9] used
MT model uncertainty to generate multiple diverse
translations. In our work, we used constrained beam
search proposed by Anderson et al. [2] to generate
multiple correct variants of translations.

Another area related to this work is using MT to
translate the training resources of NLU. Gaspers et al.
[10] use, MT to translate the training set of IVA and
reported improvement in performance compared to
grammar‐based resources and in‐house data collec‐
tionmethods. Abujabal et al. [1] used the MTmodel in
conjunction with an NLUmodel trained for the source
language to annotate unlabeled utterances reporting
that 56% of the resulting automatically labeled utter‐
ances had a perfect match with ground‐truth labels,
and 90% reduction in manually labeled data.

3. Method
In our exploration of the impact of dataset limita‐

tions in semantic knowledge‐driven MT on NLU sys‐
tems, we employed a methodology that aligns with
the approaches detailed in Sowanski et al. [25]. This
approach is twofold, involving the development of a
verb ontology and its subsequent application in MT.

Figure 2 presents the method to ϐind verb equiva‐
lents in the target language to increase the variance
of training resources. The verb ontology, a central
element of this method, was derived by analyzing a
diverse array of eight NLU corpora. In this process, a
primary set of verbs was extracted, chosen for their
prevalence and signiϐicancewithin these corpora. This
set of verbswas then linked to VerbNet, utilizing Levin
classes to categorize verbs based on their syntactic
and semantic characteristics. This linkage to VerbNet
served as a foundational step in creating a robust
verb ontology. The ontology was further enriched by
incorporating additional verbs that were semantically
related to the initially extracted ones, utilizing Word‐
Net synsets for this purpose.

This method of expansion through WordNet
ensured a comprehensive and nuanced
representation of verb semantics in the ontology.

For the application of this verb ontology in MT,
the methodology involved using the multiverb_iva_mt
library. This library is designed to leverage the verb
ontology for generating multiple translation variants
for each input sentence, a key feature of the multi‐
variant MT approach we adopted.

In assessing the effectiveness of this multi‐variant
MT methodology, comparisons were made with other
translation methods for NLU resources. These meth‐
ods included single‐best translation, which typically
produces the most probable translation for an input
sentence, back‐translation, a process of translating
a sentence to a different language and back to the
original, sampling from the model output probability
distribution, and translations generated using large
language models (LLMs) like GPT‐3.

This methodology, which aligns with the approach
used in Sowanski et al. [25], was instrumental in our
study. It allowed us to investigate how the application
of a verb ontology in multi‐variant MT can inϐluence
the performance of NLU systems, especially in the
context of IVA. This approach was not only crucial in
highlighting the potential of multi‐variant MT but also
provided a comparative analysis with existing trans‐
lation techniques, thereby enriching the discussion on
optimizing NLU systems.

4. Experiments
In our study, we conducted two sets of experi‐

ments to evaluate the impact of multi‐variant MT on
NLU. The ϐirst experiment utilized the MultiATIS++
dataset, speciϐically its English‐Turkish and English‐
Japanese subsets, to examine whether a dataset not
focused on linguistic variants would show improve‐
ments with multi‐variant MT.

For the second experiment, we shifted our focus
to the Leyzer dataset, an English‐Polish dataset that is
designed to be aware of linguistic variants. This exper‐
iment aimed to explore if a variant‐oriented dataset
will show positive inϐluence of the multi‐variant MT.

In both experiments, we compared baseline NLU
models trained on untranslated data with models that
used two translation approaches: the standard single‐
best translation and our proposed multi‐verb trans‐
lation. The single‐best method uses a beam search
algorithm to produce one likely translation, while our
multi‐verb approach generates multiple translations
guided by verb ontology, aiming to capture linguistic
richness in expressing the same intent.

These experiments collectively aim to shed light
on how incorporating linguistic knowledge into MT
can signiϐicantly enhance NLU systems, particularly in
datasets that are designed to accommodate linguistic
diversity in expressing intents.

4.1. Data

In our experiments we used two NLU datasets:
MultiATIS++ and Leyzer.
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CLASS 13

CLASS 13.5

CLASS 13.1
CLASS 13.2
CLASS 13.3
CLASS 13.4

CLASS 13.6

{give, pass, rent}
{submit}
{extend, grant}
{provide, present}
{find, get, call, take, save, ...}
{change, exchange, replace}

NLU VERBNET WORDNET

INTENT 1 (email_query)

INTENT 2 (news_query)

GET EN
SYNSET

GET
LEMMAS

find.v.03

Lemma('find.v.03.find'),
Lemma('find.v.03.regain')

GET TGT
LEMMAS

Lemma('find.v.03.encontrar'),
Lemma('find.v.03.recuperar')

find all emails
read me the last email
check my emails

find news about brexit
read me new headlines
show me news about (...)

Figure 2. Overview of the method to find new verbs variants for IVA proposed in [25]. NLU verbs are matched to VerbNet,
which consists of a WordNet synset from which a lemma in the target language can be extracted

The MultiATIS++ dataset [29] is an expanded ver‐
sion of the original Air Travel Information System
(ATIS) dataset, adapted for multilingual NLU and
designed to support research in multilingual MT and
NLU.

This dataset was formed by translating the English
ATIS dataset into multiple languages while keeping
the original sentence structures and semantic annota‐
tions. It includes over 40,000 sentences across various
domains such as ϐlight information, fare details, and
ground services. The careful process of translating and
adapting it into several languages, like Spanish, Ger‐
man, and French, makes MultiATIS++ a valuable tool
for training and evaluating MT systems in different
language settings.

We used the second version (0.2.0) of the Leyzer1
dataset to conduct the experiments. Leyzer is a mul‐
tilingual dataset created to evaluate virtual assis‐
tants. It comprises 192 intents and 86 slots across
three languages (English, Polish, and Spanish) and
21 IVA domains. We selected Leyzer to conduct our
experiments because each intent comprises several
verb patterns and levels of naturalness. For exam‐
ple, ChangeTemperature intent, which represents the
goal of changing the temperature of a home thermo‐
stat system, distinguishes three levels of naturalness,
where the most natural way (level 0) of uttering this
goal by the user would be to say “change temperature
on my thermostat”, less natural (level 1) would be “set
the temperature on my thermostat”, and ϐinally least
natural (level 2) yet still correct would be “modify the
temperature on my thermostat”. These two pieces of
information that are also available in the test set of the
Leyzer corpus allow us to measure the impact of the
multi‐verb translation better.

The training subset of Polish corpora that we used
in the second experiment includes 15748 train utter‐
ances, 4695 development utterances, and 5839 test
utterances. The English subset of corpora thatweused
to translate and report results of single‐best andmulti‐
verb includes 17289 training and validation utter‐
ances. We extracted 3997 utterances from the trans‐
lated training set for validation, ensuring at least one
sentence is available for every intent, level, and verb
pattern.

4.2. Multi‐variant MT

We used verb ontology for IVAs [25] to gener‐
ate multiple variants of translations. In our experi‐
ments we used English‐to‐Polish [22] and English‐to‐
Turkish [23] models. We tested multi‐variant MT on
the NLU training set translation task, where English
corpora were translated to Polish, and the NLU model
was trained from them. In our experiments, we show
that verb ontology can improve IC results only in tasks
(datasets) where verb diversity is taken into account.
4.3. Natural Language Understanding

In the case of experiments on the Leyzer dataset,
we used multilingual XLM‐RoBERTa [7] models for
intent classiϐication (IC) and slot‐ϐilling (SF).We chose
this architecture for NLU as it can be easily compared
to models presented in MASSIVE and achieves better
results in a multilingual setting when compared to
multilingual BERT (mBERT). For the MultiATIS++ we
applied a similar approach but to preserve compara‐
bility with baselines [6, 19] we used mBERT as NLU
core model.

XLM‐RoBERTa was trained on 2.5TB of ϐiltered
CommonCrawl data containing 100 languages. During
ϐine‐tuning, we used Adam [14] for optimization with
an initial learning rate of 2𝑒 − 5.

The quality of the IC model was evaluated using
the accuracy metric that represents the number of
utterances correctly classiϐied to the given intent. SF
modelwas evaluatedusing amicro‐averagedF1‐score.
4.4. Comparative Analysis of Multi‐Variant Translation

Methods: Back‐translation, Sampling, and GPT‐3

In the domain of MT, generating multiple variants
of a translation has been a focal point for enhanc‐
ing the robustness and expressiveness of translated
text. Two prevailing techniques for generating these
variants are back‐translation [21] and sampling [28],
which have been widely adopted due to their proven
effectiveness in generating diverse yet coherent trans‐
lations. Back‐translation involves translating a sen‐
tence to a target language and then back to the source
language, while Sampling uses probabilistic models to
choose different possible translations. Thesemethods
serve as strong baselines for evaluating innovative
approaches to MT.
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In this section, we compare our MT library, which
leverages a customverb ontology for generating trans‐
lation variants, against these well‐established tech‐
niques.

We aim to demonstrate the advantages of incorpo‐
rating semantic understanding through verb ontology
in generating multiple translation variants.

Another contemporary approach to generating
multiple translation variants involves using large‐
scale language models like GPT‐3, speciϐically its text-
davinci-003 version. By employing a sophisticated
prompting mechanism, GPT‐3 can generate many
coherent and contextually relevant translation vari‐
ants. Brown et al. [4] have demonstrated that GPT‐
3 performs at or near state‐of‐the‐art levels across
a wide range of NLP tasks, making it a compelling
baseline for comparison. In this study, we utilize GPT‐
3 as an advanced control group, contrasting its perfor‐
mance with BackTranslation, Sampling, and our verb
ontology‐based method to provide a comprehensive
evaluation landscape.
4.5. Impact of Multi‐verb on Baseline Dataset (Multi‐

ATIS++)

In Table 1, we examined the performance of low‐
resource languages, speciϐically Japanese and Turkish,
using theMultiATIS++dataset for testing. This dataset,
a prominent benchmark in NLU, was chosen for its
limited focus on utterance diversity, a common trait in
many NLU datasets. Our goal was to demonstrate that
datasets not designed to encompass a wide range of
utterance variants may not signiϐicantly beneϐit from
multi‐variant MT approaches. Our ϐindings show that,
in such contexts, the multi‐variant MT method out‐
performs FC‐MTLF [6], the current state‐of‐the‐art, in
both intent accuracy and slot 𝐹1 score. However, the
application of multi‐verb MT does not yield improved
results over single‐best MT in this scenario.

When compared to both FC‐MTLF and GL‐
CLeF [19], which are based on concepts like
contrastive learning or multitask learning, our
approach does not require a change of production
in NLU architecture. The fact that it is based on MT
of training data makes it easily applicable in various
production environments (including On‐Device).
4.6. Impact of Multi‐verb Translation on a Verb‐aware

Dataset (Leyzer)

To assess the efϐicacy of the proposed multivari‐
ant translation technique, a set of experiments was
designed to compare it against establishedparaphrase
generation algorithms. For contextual evaluation, two
referencemodels are also introduced. These reference
models are trained and tested solely on an untrans‐
lated subset of the dataset in question.

The experimental setup employs the English train‐
ing corpus from theLeyzer dataset, comprising17,290
utterances. Each method translates these utterances
into Polish, generating multiple translation variants
in the process. Subsequently, the translated output
is partitioned into a new training and validation set,
following an 80:20 ratio. The Inferential Consistency
(IC) and Semantic Fidelity (SF) models, if applicable,
are then trained on these sets. Evaluation is conducted
using an independent Polish test set that has not
undergone translation.

In the preceding section, the methodologies of
Back‐translation, Sampling, and ChatGPT prompting
have been elaborated. For single‐best translation, the
method termed “Single‐best IVA” is employed; this uti‐
lizes the M2M100 model adapted for the IVA domain
and identiϐies the most accurate translation using
a beam‐search algorithm. Conversely, the multi‐verb
translation approach generates an array of translation
alternatives. This is achieved through a constrained
beam search, steered by the proposed verb ontol‐
ogy, to yield multiple semantically nuanced output
variants.

Table 2, presents the impact of multiple variant
generation on IC and SF model results. Reference
models in English and Polish yield results above 95%
for both IC and SF, afϐirming that high‐quality trans‐
lated training data can lead to strong performance
metrics. As for the methods aimed at generating mul‐
tiple translation variants, Back‐translation and Sam‐
pling achieve lower performance, with intent accu‐
racies of 77.07% and 79.00%, respectively. Although
popular, thesemethods demonstrate a noticeable per‐
formance gap compared to the referencemodels. GPT‐
3 prompting, on the other hand, performs signiϐicantly
better with an intent accuracy of 84.58%, though it
still falls short of the reference models. Our proposed
method, multi‐verb translation, outperforms all other
methods with an intent accuracy of 87.53%, closely
approaching the high‐performance benchmarks set by
the reference models. These results underscore the
effectiveness of generating translation variants based
on verb ontology, especially when compared to Back‐
translation, Sampling, and GPT‐3 prompting.

The multi‐verb improvement to the translation
generation positively impacts IC model results in
Leyzer (verb‐diverse). The accuracy of multi‐verb
translation is 3.8%, relatively better than single‐best
translation. However, it is 7.95% relatively lower than
the baseline model. As presented in Table 3, each
English sentence generates an average of 2.63 Polish
translations. This, in our opinion, is the main factor of
whymulti‐verb translation generates a better training
dataset for the IC model. Leyzer test set evaluates
multiple variants in which given intent can be uttered,
including different levels of naturalness and verb pat‐
terns; therefore, more variant training set improves
results. Further improvements to IC could be made if
more variants were created in verb ontology.
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Table 1. Comparison of NLU Intent Accuracy and Slot 𝐹1‐score between baselines, single‐best translation, and multi‐verb
translation on MultiATIS++ dataset (Japanese and Turkish)

Method
English-Japanese English-Turkish

Intent Acc. [%] Slot 𝐹1-score [%] Intent Acc. [%] Slot 𝐹1-score [%]
Gl‐CLeF 82.84 73.12 83.92 65.85
FC‐MTLF 82.95 74.24 86.02 68.22
Single‐best IVA 84.65 78.82 89.37 68.26
Multi‐verb IVA 84.83 78.61 83.63 73.91
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Figure 3. Verb frequency and verb position on the ranking list for selected VA datasets presented in logarithmic scale

Table 2. Comparison of NLU Intent Accuracy and Slot
𝐹1‐score between baseline, single‐best translation, and
multi‐verb translation on the Leyzer dataset
(English‐Polish)

Method Intent Acc. [%] Slot 𝐹1-score [%]
English reference 96.05 98.24
Polish reference 95.48 98.07
Back‐translation 77.07 ‐
Sampling 79.00 ‐
Single‐best IVA 83.73 88.21
GPT‐3 prompting 84.58 ‐
Multi‐verb IVA 87.53 88.15

Table 3. Average number of target verbs generated in
verb ontology that correlates with the number of
variations that will be generated for a single input
English sentence

Language Avg. Num. of Target Verbs
Polish 2.63
Turkish 2.16
Japanese 2.13
French 5.09
Italian 4.24
Portuguese 3.76
Spanish 3.51
Swedish 2.46

Multi‐verb translation does not improve the
results of the SF model. Our method does not
generate different variants of slot values; therefore,
during training, the SF model cannot generalize to
new test cases. The difference in 𝐹1‐score between
single‐best and multi‐variant is not statistically
signiϐicant.

5. Insights into IVA Language and Corpus Con‐
struction from Analyzing Levin Classes

IVA commands can be simpliϐied as a composition
of a verb and its parameters.We start our investigation
by analyzing verbs from the eight most popular NLU
corpora, as this allows us to gain crucial information
about the event or action being described [17].

In Table 4, the top ten most frequent verbs in all
NLU corpora are presented. The highest‐ranked verbs
represent most frequently used features of virtual
assistants: calendar, alarm, andmusic domains, which
explain why given verbs are most popular.

While analyzing verb frequency, we noticed that
each NLU corpus presents the same trend where the
most frequent verbs can be found in around 20% of
utterances. Figure 3 illustrates that the trend in IVA
corpora closely resembles the Zipf distribution, albeit
with some deviations. A similar trend can be found in
other linguistic resources, for example, VerbNet [13].

Verbs extracted fromNLU corpora often spanmul‐
tiple domains. For instance, the verb set could be used
to set an alarm or adjust screen brightness. To address
this complexity, we utilized Levin’s verb classiϐica‐
tion [15] to categorize verbs of similar semantic prop‐
erties. Levin classiϐied 3,024 verbs into 48 broad and
192 ϐine‐grained classes basedonpatterns of syntactic
alternations that correlate with semantic properties.
These classes are employed in this article to identify
IVA verb frames. Although Levin’s classes were ini‐
tially designed to understand syntactic and semantic
alternations in verbs, they can be adapted to compre‐
hend IVA capabilities. The key is to interpret these
verbs in the context of virtual actions and outputs.
While IVAs cannot perform all human tasks, they can
simulate a wide array of actions in a virtual setting.
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Table 4. Top 10 English verbs from occurrence ranking and occurrence frequency in each of selected NLU corpora

Dataset Set Show Remind Play Give Tell Add Find Make Cancel
Leyzer [24] 0.7% 11.6% 0.3% 1.1% 6.5% 1.2% 1.9% 6.4% 4.6% 0.1%
MASSIVE [8] 1.8% 1.5% 1.3% 4.6% 1.1% 2.7% 1.5% 1.12% 0.9% 0.3%
MTOD [20] 15.4% 3.1% 10.8% 0.0% 0.4% 0.5% 0.7% 0.1% 0.2% 5.5%
MTOP [16] 6.2% 2.1% 4.7% 3.5% 1.2% 1.9% 1.4% 1.0% 1.2% 0.8%
PRESTO [11] 0.4% 3.1% 0.2% 0.7% 0.3% 0.9% 4.0% 1.0% 1.2% 1.2%
SLURP [3] 1.8% 1.5% 1.3% 4.6% 1.1% 2.7% 1.5% 1.1% 0.9% 0.3%
TOP [12] 0.1% 0.7% 0.1% 0.1% 0.7% 1.0% 0.1% 0.4% 0.1% 0.1%
NLU++ [5] 0.1% 0.2% 0.0% 0.0% 0.1% 0.3% 0.0% 0.0% 0.3% 0.2%

While automated verb classiϐicationmethods have
been explored [26], these approaches primarily focus
on general language and rely on syntactic features.

They have shown promising results in classifying
verbs into Levin classes, but their applicability to the
specialized language of IVAs remains uncertain. Anno‐
tated corpora and theories like speech act theory [27]
provide valuable insights into human‐machine inter‐
actions. However, they often do not focus on the spe‐
ciϐic verbs employed in IVAs, nor are there resources
readily available for the automatic or semi‐automatic
classiϐication of such verbs. This creates a veriϐica‐
tion challenge, as existing methods cannot be deϐini‐
tively cross‐referenced for accuracy in this specialized
domain. Therefore, we developed our own classiϐica‐
tion method to better address the unique linguistic
features of IVA interactions.

Below,we present verbs found inNLU corpora that
have been successfully matched to VerbNet classes.
Using those classes, other instances (verbs) of the
same frame can be found. The ten most frequent
classes found in NLU corpora are:

5.1. Verbs of Change of Possesion (Class 13)

Representing10.73%of IVA interactions fromana‐
lyzed corpora, predominantly facilitate transactions
of goods, services, or information between the user
and the assistant. This class is central to IVA func‐
tionality, as it mirrors everyday exchanges where
users command the assistant to retrieve, provide, or
exchange items. For instance, a user might use “give”
to request speciϐic data (“give me the weather fore‐
cast”), or “order” for e‐commerce purposes (“ordermy
usual pizza”). These verbs embody the core of IVA‐user
interactions: the assistant acting as an intermediary in
obtaining or delivering what the user needs.

Incorporating diverse variants in Class 13 is essen‐
tial to develop an IVA capable of handling various
transactional tasks. This approach not only allows
the IVA to understand and respond to nuanced user
requests but also enhances its versatility and user
engagement. To expand the dataset with more vari‐
ants in Class 13, the following strategies can be
applied:
1) Contextual Adaptations: Look at existing verbs in

the class and brainstorm context‐speciϐic varia‐
tions. For example, “give” (13.1) could extend to
“hand over” in scenarios of physical item exchange,
or “transfer” in digital contexts.

2) Semantic Expansion: Introduce verbs with similar
meanings but different nuances. For instance,
alongside “buy” (13.5.1), include “purchase”
(13.5.2) to cover formal transactions, or “acquire”
for a broader sense of obtaining something.

3) Synonyms and Collocations: Utilize synonyms that
ϐit different interaction styles. “Order” (13.5.1) can
be expanded to “request” for more formal or polite
interactions, and “book” (13.5.1) to “reserve” for
appointments or services.

4) Cross‐Class Integration: Some verbs belong tomul‐
tiple classes, like “pass” (11.1, 13.1). Explore such
verbs to provide cross‐contextual understanding.
For instance, “exchange” (13.6) could be paired
with ’trade’ to encompass barter‐like interactions.

5) User Intent Variability: Add verbs that change
meaning based on context. “Get” (13.5.1) might
mean “acquire” in a shopping context but “under‐
stand” in an informational one.

6) Action‐Speciϐic Verbs: Include verbs speciϐic
to IVA capabilities, like “retrieve” (13.5.2) for
data retrieval tasks, or “grant access” (13.3) for
permission‐related actions.

7) Extension Examples: From “rent” (13.1): Expand
to “lease” for long‐term agreements, or “hire” for
services. From ’save’ (13.5.1): Include “store” for
data preservation, or “archive” for long‐term stor‐
age. From “provide” (13.4.1): Extend to “supply”
for continuous provision, or “furnish” for equip‐
ping with necessary items. From “select” (13.5.2):
Add “choose” for personal preference scenarios, or
“pick out” for more casual selections.

5.2. Verbs of Communication (Class 37)

Class 37, encompassing 9.34% of IVA verbs, is piv‐
otal in facilitating information and action requests.
These verbs represent the IVA’s evolution from a basic
tool to a sophisticated communication facilitator. To
construct a versatile IVA dataset, a nuanced under‐
standing of these verbs and their variances is cru‐
cial. This understanding not only ensures accurate
responses to user queries but also broadens the IVA’s
communication abilities, enhancing user interaction.
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Verbs in Class 37 are integral for requesting infor‐
mation (“ask”, “inquire”) or speciϐic actions (“tell me
the news”, “explain this topic”). They also include
verbs for indirect communication (“email”, “phone”),
reϐlecting the IVA’s role in facilitating digital interac‐
tions. This class highlights the IVA’s capability to han‐
dle various communication forms, from direct com‐
mands to more complex, context‐dependent requests.

To enrich Class 37 for Diverse Communication
Needs:
1) Contextual Variability: Incorporate verbs used in

different communication styles and contexts. For
example, alongside “tell” (37.1), include “inform”
for formal scenarios or “relay” for indirect commu‐
nication.

2) Synonyms and Colloquialisms: Use synonyms to
cater to diverse user expressions. “Chat” (37.6) can
be expanded with “converse” for a formal tone or
“talk” (37.5) for casual interactions.

3) Technological Adaptations: Given the digital
nature of IVAs, include verbs like “text” or
“message” alongside “email” (37.4), reϐlecting
modern communication methods.

5.3. Verbs of Creation and Transformation (Class 26)

Class 26, constituting 6.92% of IVA verbs, plays a
unique role in IVAs, signifying the creation or transfor‐
mation of virtual outputs. Although IVAs don’t engage
in physical creation or alteration, they are instru‐
mental in generating or modifying digital content in
response to user commands.

This class includes verbs where the IVA acts as an
agent to “create” or “transform” virtual entities. For
example, “arrange” (26.1) in “arrange my meetings”
involves the IVA organizing data to create a struc‐
tured schedule. “Convert” (26.6), as in “convert USD
to EUR”, demonstrates the IVA’s ability to transform
information, offering a new form of output. This class
encapsulates the IVA’s capability to produce or alter
digital information in a meaningful way for the user.

Strategies for Enriching Class 26 in IVA Datasets:
1) Context‐Speciϐic Variations: Extend verbs to cover

various digital creation or transformation scenar‐
ios. For “make” (26.1), include “generate” for cre‐
ating reports or “fabricate” for creating ϐictional
responses.

2) Action‐Oriented Verbs: Add verbs that represent
speciϐic digital actions. “Compile” (26.1) could be
expanded to “assemble” for gathering information,
or “synthesize” for merging data.

3) Semantic Enrichment: Include verbs with nuanced
meanings. “Transform” (26.6) can be accompanied
by “morph” for subtle changes, or “revise” for edit‐
ing content.
Diverse verbs in this class empower the IVA to

handle a variety of creation and transformation tasks,
enhancing its utility and user interaction. This diver‐
sity:

Improves Functionality: A wider range of verbs
allows the IVA to understand and execute more com‐
plex creation and transformation tasks. EnhancesUser
Interaction: By accurately interpreting and respond‐
ing to varied commands, the IVAoffers amoredynamic
and engaging experience. Caters to User Needs: A ver‐
satile IVA, skilled in various creation and transfor‐
mation tasks, meets diverse user requirements, from
organizing data to converting information.
5.4. Aspectual Verbs (Class 55)

This is where 5.19%of the IVA verbs belong. These
verbs describe the initiation, termination, or contin‐
uation of an activity. Users often employ these verbs
to control the start, continuation, or cessation of tasks
performed by the VA. The relationship between the
user’s utterance and the expected action is direct: the
aspectual verb provides clear cues about the desired
phase of the task, whether it is an initiation, continua‐
tion, or termination.

To extend this class effectively, consider the follow‐
ing strategies:
1) Initiation Verbs: Focus on verbs that signal the

start of an activity. Examples include:
‐ “Initiate”: for formally beginning a process.
‐ “Launch”: for starting applications or digital pro‐
cesses.

‐ “Activate”: for turning on features or functions.
2) Continuation Verbs: These verbs indicate the

ongoing nature of an activity. Examples include:
‐ “Proceed”: for carrying on with a process.
‐ “Sustain”: formaintaining ongoing tasks or oper‐
ations.

‐ “Persist”: to indicate continuous action, espe‐
cially under challenging circumstances.

3) Termination Verbs: These are crucial for signal‐
ing the end of an activity. Examples include:
‐ “Terminate”: for formally concluding a process.
‐ “Conclude”: for ending taskswith a sense of com‐
pletion.

‐ “Cease”: for a strong indication of stopping
immediately.

5.5. Verbs of Change of State (Class 45)

Where 4.50% of the IVA verbs belong. All of the
verbs in this class relate to the change of state, with
several sub‐classes that deϐine this state in more
detail. When users employ these verbs in their utter‐
ances, they typically expect the IVA to either provide
information related to the change or execute an action
that results in the desired change. The relationship
between the user’s utterance and the expected action
is direct: the verb provides clear cues about the nature
and direction of the desired change.
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To effectively extend this class, focus on verbs that
signify speciϐic types of state changes. For instance,
include verbs like “transform” for comprehensive
changes, “adjust” forminormodiϐications, and “revise”
for corrections or updates. Additionally, consider
context‐speciϐic verbs like “upgrade” for technology‐
related changes or “refresh” for updating informa‐
tion. This targeted approach ensures that the IVA can
accurately interpret and respond to a wide range of
state‐changing commands, enhancing its responsive‐
ness and utility.
5.6. Verbs of Putting (Class 9)

Where 4.15% of the IVA verbs belong. These
verbs refer to putting an entity at some location. For
instance, users might use Put Verbs to set reminders
or arrange tasks. E.g., “Set a reminder for tomorrow.”
with Verbs of Putting in Spatial Conϐiguration, “sus-
pend” is relevant in contexts like pausing tasks or
suspending processes. Funnel Verbs could be used in
contexts like adding items to lists or pushing tasks to a
queue. Finally, Coil Verbs are connectedwith program‐
ming capabilities, i.e., “loop” might be used to indicate
repetitive tasks.
5.7. Verbs of Predicative Complements (Class 29)

This is where 4.15% of the IVA verbs belong. Verbs
belonging to that class are foundational to human
communication, especially when seeking informa‐
tion, validation, or expressing opinions. When users
employ these verbs in their interactions with IVAs,
they typically expect the assistant to provide relevant
information, conϐirm their beliefs, or assist in cate‐
gorizing or naming items. Appoint and Characterize
Verbs are used when seeking speciϐic information or
categorization. For instance, this can be seen in “How
would you rate this song?” or “Describe this image.”
Dub Verbs can be used in contexts like naming alarms
or playlists, e.g., “Call this playlist “Workout Tunes”.
Declare Verbs might be used to express opinions or
seek validation, e.g., “I believe it is going to rain today.
What do you think?”. Conjecture Verbs can be used
when users are unsure about something and seek the
assistant’s input. For example, “I guess it is late.What’s
the time?”.
5.8. Verbs of Sending and Carrying (Class 11)

Where 3.81% of the IVA verbs belong. Users
employ these verbs to command the IVA to trans‐
fer, move, or retrieve information or perform speciϐic
tasks related to sending and carrying. Recognizing
these verbs and their nuances is crucial for IVAs to
ensure they respond appropriately to user commands,
especially in contexts like messaging, reminders, and
navigation. Send Verbs are frequently used in the con‐
text of message dispatching. For instance, users might
say, “Send this message to John” or “Mail this docu‐
ment to my boss.” The expected action is for the IVA to
facilitate the dispatching of the message or document
to the intended recipient. Bring and Take verbs can be
employed in commands like “Bring up my last email”
or “Take me to the home screen.”

The user expects the IVA to retrieve speciϐic infor‐
mation or navigate to a particular interface. Carry
Verbs might be used metaphorically. For instance,
“Carry this reminder over to tomorrow” would mean
the user wants the IVA to reschedule a reminder.
5.9. Verbs of Removing (Class 10)

Where 3.11% of the IVA verbs belong. The rela‐
tionship between users employing these verbs and
the expected action is that users command the IVA to
remove, eliminate, or reϐine something. Remove Verbs
are commonly used in tasks like ϐile management or
editing. For instance, “Delete the third paragraph” or
“Remove this contact from my list.” Banish and Clear
Verbs might be used in contexts like clearing notiϐica‐
tions, “Clear all my notiϐications”, or managing tasks,
and “Recall the email I just sent.”
5.10. Verbs of Assuming Position (Class 51)

This is where 2.77% of the IVA verbs belong. The
relationship between users employing these verbs
and the expected action is that users are commanding
the IVA to navigate, guide, or move through digital
spaces or tasks. Verbs of Inherently Directed Motion
can be used in navigational tasks or browsing. For
example, “Go to the next email” or “Exit the current
application.” Leave Verbs in a digital context might be
used as “Leave this group chat” or “Leave the current
session.” Manner of Motion Verbs can be metaphori‐
cally used in digital tasks. For instance, “Slide to the
next photo” or “Jump to the main menu.” Chase Verbs
can be used in “Follow the latest news on this topic” or
“Follow this artist on my music app.”

6. Conclusion
In conclusion, our study reveals that while multi‐

variant MT shows promise, its efϐicacy is signiϐicantly
contingent on the diversity of the input dataset. The
experiments conducted using the MultiATIS++ and
Leyzer datasets demonstrate that in contexts where
linguistic diversity is not a primary focus, as in the
case of MultiATIS++ (with intent accuracy improve‐
ments from 84.65% to 84.83% in English‐Japanese
translations), the advantages of multi‐variant MT are
negligible or even negative (as in case of English‐
Tukrish). However, in more variant‐rich environ‐
ments like Leyzer, there’s a notable improvement in
intent accuracy (from 83.73% to 87.53% in English‐
Polish translations), underlining the importance of
dataset selection in leveraging multi‐variant MT. Fur‐
thermore, the practical analysis of verb classes offers
valuable insights for NLU dataset creation, extend‐
ing its utility beyond speciϐic linguistic settings to
a broader range of applications in virtual assistant
development. This study underscores the need for
careful dataset curation, particularly in capturing lin‐
guistic diversity, to fully exploit the beneϐits of multi‐
variant MT in NLU systems.
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Notes
1Dataset available at https://github.com/cartesinus/leyzer
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