
Open Access. © 2024 Karolina Bogacka et al., published by Sciendo. This work is licensed under the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 License

VOLUME 18, N∘ 3 2024
Journal of Automation, Mobile Robotics and Intelligent Systems

GRADIENT SCALE MONITORING FOR FEDERATED LEARNING SYSTEMSGRADIENT SCALE MONITORING FOR FEDERATED LEARNING SYSTEMSGRADIENT SCALE MONITORING FOR FEDERATED LEARNING SYSTEMSGRADIENT SCALE MONITORING FOR FEDERATED LEARNING SYSTEMS
Submitted: 27th December 2023; accepted: 11th March 2024

Karolina Bogacka, Anastasiya Danilenka, Katarzyna Wasielewska‑Michniewska

DOI: 10.14313/JAMRIS/3‐2024/18

Abstract:
As the computational and communicational capabilities
of edge and IoT devices grow, so do the opportunities for
novel machine learning (ML) solutions. This leads to an
increase in popularity of Federated Learning (FL), espe‐
cially in cross‐device settings. However, while there is a
multitude of ongoing research works analyzing various
aspects of the FL process, most of them do not focus on
issues concerning operationalization andmonitoring. For
instance, there is a noticeable lack of research in the topic
of effective problem diagnosis in FL systems. This work
begins with a case study, in which we have intended to
compare the performance of four selected approaches to
the topology of FL systems. For this purpose, we have
constructed and executed simulations of their training
process in a controlled environment. We have analyzed
the obtained results and encountered concerning peri‐
odic drops in the accuracy for some of the scenarios. We
have performed a successful reexamination of the exper‐
iments, which led us to diagnose the problem as caused
by exploding gradients. In view of those findings, we have
formulated a potential new method for the continuous
monitoring of the FL training process. The method would
hinge on regular local computation of a handpicked met‐
ric: the gradient scale coefficient (GSC). We then extend
our prior research to include a preliminary analysis of the
effectiveness of GSC and average gradients per layer as
potentially suitable for FL diagnostics metrics. In order to
performamore thorough examination of their usefulness
in different FL scenarios, we simulate the occurrence
of the exploding gradient problem, vanishing gradient
problem and stable gradient serving as a baseline. We
then evaluate the resulting visualizations based on their
clarity and computational requirements. We introduce
a gradient monitoring suite for the FL training process
based on our results.

Keywords: federated learning, exploding gradient prob‐
lem, vanishing gradient problem, monitoring

1. Introduction
Federated Learning (FL, [17, 25]) as a Distributed

Machine Learning (DML) paradigm prioritizes main‐
taining the privacy of the devices (called clients). It
aims to do so by leveraging the computing and com‐
municational capabilities of the clients. A standard FL
training process begins with the server initializing a
machine learning (ML) model and subsequently com‐
municating its weights to the clients.

The clients then use them to conduct local training
and return their results to the server, where they are
aggregated into a new global model. The whole pro‐
cess repeats multiple times until stopping criteria are
met.

As of now,most of theMLmodels used for FL train‐
ing are ϐirst designed in a centralized setting, with the
developer having unrestricted access to a representa‐
tive sample of the global dataset. Because of that, they
are able to employ a variety of preexisting techniques
and tools to make sure that the initial model archi‐
tecture has been optimally selected. Many of the data
preprocessing steps and hyperparameters developed
in that initial phase form a base for later FL training.
Unfortunately, this workϐlow can only be utilized for
use cases where the representative global dataset can
be constructed, excluding settings that demand addi‐
tional privacy or just have largely distributed, heavily
localized and client‐speciϐic data. In that case, the FL
model development phase has to be conducted in a
distributed environment over multiple runs, causing
it to be potentially much slower. Distributed envi‐
ronments also involve the unexpected occurrences of
other potential hazards in the form of sudden client
dropout and differing client data distributions, caus‐
ing the diagnosis of problems such as vanishing or
exploding gradients to be signiϐicantly more difϐicult.
This necessitates the development of effective tools of
FL system diagnosis, for example through continuous
monitoring of selected metrics. As this is a problem
that affects the development and maintenance of FL
systems, it can be understood as belonging to the
domain of Federated LearningOperations (FLOps) [4],
which aims to improve the FL lifecycle as a whole.

We have confronted the aforementioned issues
during our work on the Assist‐IoT project 1. We have
conducted trials to determine the most suitable FL
topology to implement in the Assist‐IoT project pilots
centered around: (1) construction workers’ health
and safety assurance, (2) vehicle exterior condition
inspection [6]. More speciϐically, it was important to
provide a lightweight and scalable system for fall
detection of construction workers in pilot 1 and auto‐
matic vehicle detection in pilot 2. In order to ascertain
the best FL topology for the pilots, we have conducted
a preliminary analysis of the issue [1] and selected 4
especially “promising” approaches in the form of the
centralized, centralized with dynamic clusters, hierar‐
chical, and hybrid architectures.

14

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

Our initial simulations have instead revealed some
of those approaches (hierarchical and hybrid) to be
especially sensitive to the exploding gradient problem,
which in their cases presents itself as periodic drops
in accuracy. The exploding gradient problem here is
deϐined as a situation in which the gradient backprop‐
agation in neural network training increases exponen‐
tially. This causes the training process to stall, with
the resulting model deteriorating in some cases [31].
We have applied modiϐications to the experiment
design in order tomitigate this problem.We have then
described the whole process as a case study.

This article is an extension of the research pre‐
sented in the conference paper [3]. We expand the
theoretical part of this work, which now includes
more information about the current state of FLOps
with special importance given to the diagnostic tools.
Descriptions of both the exploding and vanishing gra‐
dient problems are broadened as well, including both
their common causes and mitigation techniques. A
proposedgradientmonitoringmetric suite is designed
by combining a modiϐied version of the previously
proposed Gradient Scale Coefϐicient (GSC) with the
newly added average gradient per layer. The efϐicacy
of the suite is tested in three simulated scenarios (van‐
ishing gradient, exploding gradient, and baseline) for
two selected topologies (centralized andhierarchical).
Results are analyzed, both investigating the clarity of
the visualizations produced by the suite as well as its
necessary communication cost.

2. Related Works
2.1. Federated Learning Operations

Federated Learning Operations (abbreviated as
FLOps) is a cross‐discipline software development
methodology. Its aims to improve the efϐiciency and
quality of the development, deployment, and main‐
tenance processes of FL systems [4]. As such, FLOps
extends the principles devised for the purposes of
MLOps and DevOps methodologies, such as continu‐
ous integration, deployment automation and model
monitoring [18] to FL environments.

It is worth mentioning that the deϐinition of FLOps
formulated in [4] refers only to cross‐silo environ‐
ments. However, there are no clear reasons men‐
tioned why it could not be extended to cross‐device
settings. On the contrary, there are many exam‐
ples of cross‐device business use cases such as the
Gboard [37]. Although the particular activities com‐
posing the FLOps lifecycle in cross‐device scenario
may change, involving less negotiations between busi‐
ness entities and data interface formulations than in
the cross‐silo environments, the scenario still poses
a signiϐicant challenge in terms of automation and
operationalization. Thisworkwill focus on diagnosing
problems caused by the gradient instability in cross‐
device FL systems. As effective solutions for FL diag‐
nostics inϐluence the efϐiciency andquality of FL devel‐
opment, it can therefore be considered as contributing
to the research on FLOps.

FD

FL

OPS

Figure 1. A simplified diagram of the FLOps process
flows from [4]

The interaction between various FLOps ϐlows is
visualized in Figure 1. FD stands for Federated Design,
which encompasses the processes of data analysis and
model design. FL marks the ϐlow of FL training, and
OPS indicates the maintenance and monitoring of FL
solutions deployed in production. Even though a given
FL development process always begins with the FD
phase, other phases can ϐlexibly ϐlow into each other
based on the results achieved at a given stage. For
example, amodel that does not performwellmay indi‐
cate the necessity of a return to FD, and insufϐicient
performance metrics achieved during OPS may cause
FL to restart.

Our research can be placed at the intersection of
FD and FL, enabling an earlier transition from the
latter to the former. It can be therefore understood
as a means of optimizing the whole workϐlow in a
holistic manner. Moving beyond the idea of optimiz‐
ing a singular training process, effective FL diagnostic
tools can shorten the length of the whole federated
development process.
2.2. The State of FL Diagnostic Tools

As of now, the research on FL system diagno‐
sis often centers around monitoring the clients in a
secure and private manner in order to effectively dis‐
tinguish those that are marked by their exception‐
ally bad performance [21] [24] [26]. As much as the
solutions presented in the aforementioned works are
interesting, theymaynot be sufϐicient to identify prob‐
lems with a bad choice of hyperparameters or model
architecture. FedDebug [11] offers the most compre‐
hensive approach of all of those monitoring frame‐
works, enabling the developer to usemetrics gathered
throughout the training to replay previous rounds or
set breakpoints. This is an effective solution to the
problem of recognizing faulty clients.

15

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

However, some works involving other aspects of
diagnosing FL systems can also be found. [20] pro‐
vides a worthwhile contribution to the problem of FL
model debugging by delineating how the integration
of interpretable methods into FL systems may result
in a potential solution, making it a very promising
research direction. [7], on the other hand, concen‐
trates on the software errors frequently encountered
by the users of selected FL frameworks. Finally, Fed‐
DNN‐Debugger [8] aspires to mitigate some of the
problems affecting FLmodels (biased data, noisy data,
or insufϐicient training) by inϐluencing their local com‐
putation. Structure bugs, such as insufϐicient training
aswell as biased or noisy data, are beyond the scope of
this solution. Fed‐DNN‐Debugger contains two mod‐
ules, with the ϐirst one providing non‐intrusive meta‐
data capture (NIMC) and generating data that is then
used for automated neural network model debugging
(ANNMD).
2.3. The Exploding Gradient Problem

The problem of exploding gradient is caused by
a situation, in which the instability of gradient val‐
ues backpropagated through a neural network causes
them to grow exponentially, an effect that has an
especially signiϐicant inϐluence on the innermost lay‐
ers [31]. This problem tends to get occur more often
the more depth a given ML architecture has, forming
an obstacle in the construction of larger networks.
Additionally, exploding gradient problemmay in some
cases be caused by the wrong weight values, which
tend to beneϐit from normalized initialization [12].
When talking about activation functions, the problem
may be avoided by using a modiϐied Leaky ReLU func‐
tion instead of the classic ReLU function. The reason
for this behaviour lies in the addition of a leaky param‐
eter, which causes the gradient to be non‐zero even
when the unit is not active due to saturation [27].
Another approach to stabilizing neural network gradi‐
ents (for the exploding as well as the vanishing gradi‐
ent problem) involves gradient clipping. The original
algorithm behind gradient clipping simply causes the
gradient to be rescaled whenever they exceed a set
threshold, which is both very effective and computa‐
tionally efϐicient [29].

There areother existing techniques, such asweight
scaling or batch normalization, which minimize the
emergence of this problem. Unfortunately, they are
not sufϐicient in all cases [31]. Some architectures, for
instance fully connected ReLU networks, are resistant
to the exploding gradient problem by design [14].
Nonetheless, as these architectures are not suitable
for all ML problems, this method is not a universal
solution.

2.4. The Vanishing Gradient Problem

The reverse of the exploding gradient problem, the
vanishing gradient problem is considered one of the
most important issues inϐluencing the training time
on multilayer neural networks using the backpropa‐
gation algorithm. It appears when the the majority of
the constituents of the gradient of the loss function
approaches zero. In particular, this problem mostly
involves gradient layers that are the closest to the
input, which causes the parameters of these layers
to not change as signiϐicantly as they should and the
learning process to stall.

The increasingdepthof theneural networkand the
use of activation functions such as sigmoid makes the
occurrence of the vanishing gradient problem more
likely [32]. Alongwith the sigmoid activation function,
thehyperbolic tangent ismore susceptible to theprob‐
lem than rectiϐied activation functions (ReLU), which
largely solves the vanishing gradient problem [13].
Finally, similarly to the exploding gradient problem,
the emergence of the vanishing gradient problem has
been linked to weight initialization, with improve‐
ments gained from adding the appropriate normaliza‐
tion [12].
2.5. Advances in Research on Topology of Federated

Learning

The default, centralized network topology used for
a FL system, which involves a single powerful cloud
server communicating with a federation of clients
located on edge and IoT devices may not be the
most suitable solution for all use cases [35]. Some
require efϐicient communication, which may be more
effectively provided by the solutions that have either
reduced the importance of the server or removed it
all together [2]. Others focus on leveraging network
topology to minimize problems cause by data hetero‐
geneity. There also those that attempt to combine the
twoapproachesdescribedaboveby carefully grouping
the clients [5].

[35] includes a catalogue of many commonly
encountered trends in research involving FL topol‐
ogy, classifying FL topology types to 7 categories,
including centralized [25], tree [28], hybrid [19], gos‐
sip [16], grid [33], mesh [35], clique [2], and ring [9].
Here, Federated Averaging described in [25] is an
example of the centralized topology. TornadoAggre‐
gate, on the other hand, is understood as belonging
to the hybrid category due to it constructing STAR‐
rings and RING‐stars by combining star and ring
topologies [19]. STAR‐rings indicates the existence
of a server, which performs regular client weight
aggregation along with ring‐based groups. RING‐stars
constructs a large global ring, with small centralized
groups conducting local computation and passing it
periodically to other groups in the chain. Out of those
two, STAR‐rings receives much better performance
results while maintaining the same scalability.

16

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

Some systems combine different topological
approaches in order to create a more responsive
system, that can, for instance, adaptively respond
to problems with heterogenous data. IFCA [10]
integrates a centralized topology with dynamic
clustering by periodically grouping the clients and
simultaneously training a personalizedmodel for each
of the obtained groups. Unfortunately, as this method
necessitates a warm start to the training and prior
knowledge about the number of clusters necessary,
it leaves signiϐicant space for improvement [15]. This
improvement comes in the shape of SR‐FCA,which can
automatically determine the right amount of clusters,
making it more robust and resource‐efϐicient.

All in all, there is a wide variety of FL topological
approaches developed to prioritize different aspects
of the system, such as scalability, robustness, or pri‐
vacy. These deviations in priorities make the compari‐
son of those approach especially difϐicult, as they often
involve modiϐications not only to the architecture, but
to the clustering or aggregation algorithms as well.
Moreover, it should be noted that many of the works
involving the topic of FL topology focus on a lim‐
ited range of experiments aiming to achieve the best
performance. As a result, further issues such as the
expression characteristics of the exploding gradient
problem in selected topologies and how it differs from
ML in most cases remain unexplored.

3. Experimental Setup
Our initial goal for the case study was to ascertain

the best topology for the Assist‐IoT pilots according
to our criteria of maintaining the best possible per‐
formance while exposed to negative factors such as
client dropout or non‐IID client data distribution. We
have also taken into account the ease of infrastruc‐
ture setup for a given topology and the scalability
of the whole system. Here, scalability in FL systems
is understood as the capability to maintain stringent
performance requirements in environments that are
massively distributed [39], that is, contain a very large
number of clients.

To achieve this goal we have selected four promis‐
ing solutions, each representing a different approach
to the problem and, therefore, allowing us to exam‐
ine a broad range of trends. The topologies of those
solutions are visualized in Figures 2, 3, 4, and 5.
Their accompanying descriptions can be found in sec‐
tions 3.1, 3.2, 3.3, and 3.4, respectively.

Figure 2. A visualization of the FL centralized topology

Figure 3. A visualization of the FL centralized topology
with dynamic clusters

Figure 4. A visualization of the FL hierarchical topology

Figure 5. A visualization of the FL hybrid topology

3.1. Centralized

The centralized topology has been introduced
along with the concept of FL as a paradigm in [25].
This topology consists of a server (which sends the
initial model parameters to the clients and periodi‐
cally aggregates their results to construct a new global
model) and multiple clients (which handle local com‐
putation). As such, it is oftendistinguishedby its asym‐
metric data ϐlow and information concentration on
the server, which may result in potential risks and
unfairness [22]. As the centralized topology is often
considered a default in FL systems, we have included
it as a baseline for comparison with newer, potentially
more scalable solutions.

17

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

3.2. Centralized with Dynamic Clusters

On the surface, the centralized topology with
dynamic clusters strongly resembles the centralized
topology as described in section 3.1. In involves peri‐
odic communication of a singular server with a group
of clients, where the clients handlemodel training and
the server manages weight aggregation. However, this
topology additionally includes a dynamic component
in the form of multiple personalized models (each
of the models is developed only for a fraction of the
clients).

Moreover, the assignment of the clients to a par‐
ticular model varies as well. It is recomputed reg‐
ularly by the server to ensure that it is still opti‐
mal. The assignment is based on weight similar‐
ity, which is estimated using the Euclidean distance.
The weights of each model are then computed only
based on the clients assigned to a given cluster at
the given moment [15]. This version of the central‐
ized topology with dynamic clusters includes an addi‐
tional improvement. As it is implemented according
to the SR‐FCA (Successive Reϐine Federated Clustering
Algorithm), it uses theTrimmed‐mean‐basedGradient
Descent [38] algorithm instead of Federated Averag‐
ing for weight aggregation. As Trimmed‐mean‐based
Gradient Descent excludes outliers from aggregation,
its employment causes the system to be more resis‐
tant to abnormal client behaviour such as Byzantine
failure [38]. SR‐FCA can respond to environmental
changes and adjust to varying client data distributions
without any prior information about the necessary
number of clusters nor additional local computation.
It also provides ϐlexible personalization, automatically
producing multiple models for differing groups of
clients. However, it is important tomention that itmay
not lead to an increase in scalability.

3.3. Hierarchical

Hierarchical topology (described as tree topology
in [36]) innovates the previously described central‐
ized topology by adding a third category of device:
the edge node. The edge nodes act as an intermediary
server between the main server and clients, aggregat‐
ing local model weights from all clients assigned to
them after each iteration and subsequently passing
the aggregated models onto the server each global
round. The server then aggregates the edge results
and forms a newmodel, that is later communicated to
the clients only for the process to begin again [23]. In
order tomaintain convergence, the overall data distri‐
bution of the clients allotted to each edge node should
resemble the global distribution as much as possible.
This assumption ismaintained in our simulation using
the method from [28], which advises to divide groups
of clients with similar distributions between multiple
edge nodes.Wehave beenmotivated to select the hier‐
archical topology for our trials by its combination of
simplicity and scalability, as itmanages to signiϐicantly
reduce the communicational load put on the server
while avoiding computationally‐intensive clustering
algorithms.

3.4. Hybrid

For our ϐinal example of a hybrid topology we
have decided to examine Tornadoes (described also
as STAR‐rings in [19]). Tornadoes integrates a central‐
ized architecture with local computation performed
inside particularly formed ring‐based groups. After
each global round the clients receive a new model
from the server. They train it for an iteration and pass
the results to the next client in their ring. In turn,
they receive a new model from the previous client in
their ring, which they train and pass onto the next
client. This process repeats of a set number of local
iterations. Afterwards, the server aggregates all local
models from all clients belonging to all rings, forming
the new model which is later communicated to the
clients, letting the process restart. This hybrid topol‐
ogy provides additional scalability to the system by
decreasing communication between the server and
clients without increasing the necessary infrastruc‐
ture to do so.

Moreover, the decision to use decentralized local
groups instead of edge servers makes the system as a
whole more robust to failure. However, as ring‐based
groups with high variance between client distribu‐
tions are vulnerable to catastrophic forgetting [19],
the clients have to be divided into groups using dedi‐
cated algorithms. The information required to divide
the clients differs between approaches, with some
being signiϐicantly less private than others. The afore‐
mentioned grouping algorithmsmay in some cases be
very compute‐intensive as well. All in all, in spite of
potential drawbacks visible in the design of Torna‐
does, we have decided to investigate potential scala‐
bility increase it might provide.

4. Initial Experiment Design
We have elected to use the German Trafϐic Sign

Recognition Benchmark Dataset [34] for our simu‐
lations, as it is both lightweight and less frequently
used than the datasets mentioned in [25], [15], [28],
and [19] and would therefore provide a comple‐
mentary source of information to the research pre‐
sented in those works. The dataset has been designed
for a multi‐class, single‐image classiϐication challenge
organised as a part of the International Joint Confer‐
ence on Neural Networks in 2011. It consists of 43
distinct classes and contains a global test set with
12630 examples and training set with 39209 exam‐
ples. For the purpose of our experiments, the training
set has been shufϐled and divided equally between
100 clients, with 80% of each client’s local data being
used for training and 20% for testing. The global test
set was used to compute model accuracy each round,
whereas the local test sets were employed to calculate
aggregated accuracy. As a way to reduce the compu‐
tational cost of the training process, the dataset as a
whole has been resized to 32 by 32 pixels.

18

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

The neural network architecture prepared for the
simulations contained 2 convolutional layers and 1
dense layer. At ϐirst, it utilized the Adam optimizer
without any gradient clipping, which after modiϐica‐
tions changed to gradient clipping for weights exceed‐
ing the value of 1. In both cases, the hyperparame‐
ters used included an initial learning rate of 0.001,
𝛽1 of 0.9, 𝛽2 of 0.999, 𝜖 of 10−7, batch size of 16,
25 global rounds, 20 local iterations, and categorical
cross‐entropy used as a loss function.
4.1. Client Grouping and Communication Schema

The clients were not grouped at all for the exper‐
iments investigating the centralized topology. The
experiments have been conducted for 25 full rounds,
each including every client training for 20 iterations
on local data before sending the weights to the server.
The clients then received the new weights in order to
compute on them metrics such as accuracy and loss,
which were then aggregated on the server to obtain
aggregated accuracy and aggregated loss, respectively.
The server also calculated global test set accuracy and
global test set loss.

The parameters used for clustering in simulations
conducted on the centralized topology with dynamic
clusters included size parameter 𝑡 of 3, 𝛽 of 0.1 have
been used, and threshold 𝜆 of 5. Here, local training on
the clients has similarly lasted 20 local iterations, with
client reclustering being performed after each 4 global
rounds.

For the purposes of hierarchical topology simu‐
lation 5 edge nodes have been used with 20 clients
assigned to each. As the inclusion of edge nodes min‐
imizes the additional communicational load on the
server, a more intense communication protocol has
been used for local computation. To accurately recre‐
ate the approach presented in [28], after each of the20
local iterations every client communicated its result‐
ing weights to its assigned edge nodes, where they
were aggregated and sent back to the clients. This
process has been repeated for 25 global rounds.

In order to accurately reproduce the selected
hybrid topology while minimizing the computational
intensity of the simulations, all of the clients were
grouped into 33 rings of varying length using the
algorithm described in [19]. Each global round has
contained 20 local iterations, with all of the clients
accepting theweights sent by the previous client in the
ring, training them for one iteration, and passing them
onto the next client in the ring. Afterwards, the global
model is formed by aggregating all of the local models
on the server.

5. Initial Results and the Diagnostic Process
Figure 6 shows the initial test results. Two of the

selected topologies, centralized (yellow) and central‐
ized with dynamic clusters (blue), converged to a sat‐
isfying solution with minor disturbances, which can‐
not be said about about the hybrid topology (green)
and hierarchical topology (purple). As each of the
experiments was repeated three times to form amore
robust, smoother curve, the periodic drops in aggre‐
gated accuracy visible for the hierarchical topology
cannot be explained by the existence of an outlier.
Instead, each of the drops occurs for a different
run. Additionally, the resemblance in results obtained
for the centralized topology to those for the cen‐
tralized with dynamic clusters may stem from the
IID client data distribution in the simulated environ‐
ment. In these conditions the centralized solutionwith
dynamic clusters tends to form a single client group,
behaving similarly to a plain centralized topology.

Figure 6. The accuracy training curves for initial
experiments

Figure 7 depicts our further inquiry into the issue.
It visualizes mean aggregated loss for each cluster of
clients measured after each local iteration for a hier‐
archical topology simulation, where a cluster means
all of the clients assigned to a given edge node. In
order to clearly distinguish between the clusters they
were assigned different colors. A sudden increase in
mean aggregated loss can be observed after iteration
201 for one of the clusters, with some of the other
clusters experiencing similar instabilities. They may
have been caused by the combination of an Adam
optimizer, which was designed with the assumption
of a centralized ML environment, with frequent local
communication between the client and the edge node,
which causes gradient instabilities. Interestingly, the
next global aggregation in iteration 221 seemingly
partially mitigates the issue.

19

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

In order to verify that the drops in accuracy for the
hierarchical topology were caused by gradient insta‐
bilities,wehavedesigned amakeshiftmetric. Themet‐
ric subtracts weights after and before local training in
each iteration for every client, and then sums up all of
those differences. Figure 8 visualizes the results, with
the assignment of a color to a given cluster exactly the
same as in Figure 7. The sudden rise in the values of
the metric for each of the clusters correlated with the
increasing aggregated loss, supporting the hypothesis
about it being a gradient explosion problem.

Figure 7.Mean cluster aggregated loss for hierarchical
FL in initial experiments

Figure 8. Client weight differences for hierarchical FL in
initial experiments

Having formulated an initial explanation, the train‐
ing process has beenmodiϐied to include gradient clip‐
ping as a sample method for stabilizing the training.
Subsequently, the trial has been repeated to ensure
that our explanation has been sufϐicient. Figures 10
and 9 both show ϐindings agreeing with this state‐
ment in the form of smaller and more stable values
in the case of Figure 10 and no sudden, extreme loss
increases in the case of Figure 9.

Figure 11 recreates the ϐirst trial with themodiϐied
training process, achieving amuch smoother curve for
all of the topologies. The hierarchical topology (pur‐
ple) experiences themost visible improvement, which
indicates it to be potentially themost vulnerable to the
problem of exploding gradient.

Figure 9.Mean cluster aggregated loss for hierarchical
FL in improved experiments

Figure 10. Client weight differences for hierarchical FL in
improved experiments

Figure 11. The accuracy training curves for improved
experiments

6. Preliminary Metric Choice
6.1. Gradient Scale Coefficient

In order to maximize the usefulness of the addi‐
tional metrics collected throughout the training in
the diagnostic process, in the initial work we have
proposed continuous monitoring of the gradient scale
of the local models through the regular computation
of the gradient scale coefϐicient on the clients. The
gradient scale coefϐicient is deϐined as follows.

𝐺𝑆𝐶(𝑘, 𝑙, 𝑓, 𝜃, 𝑥, 𝑦) =
||𝐽𝑙𝑘||𝑞𝑚||𝑓𝑘||2

||𝑓𝑙||2
(1)

20

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

It measures the relative sensitivity of layer 𝑙 with
regards to random changes in layer 𝑘, capturing the
size of the gradient ϐlowing background relative to the
size of the activation values growing forward.

A detailed explanation of this metric and how
to use it to can be found in [31]. Its practicality
stems from its robustness to network scaling, which
introduces the possibility of result standardization
(although the validity of this property needs to be
tested further, as the original work focused only on
limited neural network architectures). Additionally,
the ability to summarize the degree in which the gra‐
dient is currently vanishing or exploding could con‐
tribute to an effective visualization for a potential
future user comparing multiple FL runs on a single
plot.

In our work, we use a version of GSC modiϐied
according to the equation shown below:

𝐺𝑆𝐶(𝐿 + 1, 0) =
1
√𝑛
||𝐽0𝐿+1||𝐹||𝑓𝐿+1||𝐹

||𝑓0||𝐹
(2)

As the architecture used in our problem (convolu‐
tional neural network) differed from the architectures
tested in [31] (multilayer perceptron), the original
formula did not account for the difference in layer
shapes. We perform necessary modiϐications on the
GSC while keeping it as close to the original solution
as possible through changing the type of the norms
used from second order to Frobenius and omitting the
bias. Inspired by the diagrams presented in [31], in
order to extract asmuch information as possiblewhile
minimizing the computation, we decide to compute
the GSC only for the interaction between the ϐirst and
last layer.

6.2. Average Gradient Per Layer

To add a source of information about speciϐic lay‐
ers while maximizing the frugality of our resulting
metric suite, we set out to include the average gradi‐
ent of the weights per layer. We do not include bias
in our computations. While simple, we suspect this
information to be beneϐicial in cases when the extent
to which a speciϐic layer is affected by the vanish‐
ing or exploding gradient problem may play a role.
For instance, when determining to which degree the
model suffers from a vanishing gradient problem, it
may be helpful to analyze whether the gradient values
remain close to0only for a single layer, ormultiple lay‐
ers close to the input. In this approach,we are inspired
by [12]. Whereas this work uses standard deviation
intervals of weight gradients per layer in time to check
whether their proposed normalization affects the gra‐
dient throughout training, we can focus on the general
scale of the gradient expressed through the average
value. Utilizing this approach instead of, for instance,
gradient histograms per layer, will allow us to clearly
depicting the time component while minimizing the
communication load of the metric.

7. Extended Experimental Setup
7.1. Scenario Description

To simulate the three scenarios of exploding gra‐
dients, vanishing gradients, and that of the baseline,
appropriate modiϐications are applied to the model
architecture and training procedure according to the
theory presented in sections 2.3 and 2.4.

Thebaseline scenario is analogous to the corrected
model described in section 4. It consists of two con‐
volutional layers and one dense layer. The activation
function used for the two convolutional layers is Leaky
ReLU. The weights of the convolutional layers are
initialized by the Glorot Uniform initializer. In this
example, the Adam optimizer is modiϐied to include
gradient clipping, with the threshold for each weight
being that the norm of its gradient does not exceed 1.

The exploding gradient scenario is modiϐied to
include ReLU as activation function instead of Leaky
ReLU. The weights of the convolutional layers are
initialized using the uniform distribution with values
ranging from 8 to 10. Additionally, the gradient clip‐
pingmechanism is removed. Aside from the aforemen‐
tioned changes, the architecture of themodel does not
differ from the baseline.

The weights for the convolutional layers in the
vanishing gradient scenario are initialized using the
uniform distribution with values ranging from 4 to 7.
Tanh, or hyperbolic tangent, is used as the activation
function for the convolutional layers. The gradient
clipping is removed in this scenario aswell. Aside from
that, there are no further changes applied to themodel
in this scenario compared to the baseline.
7.2. Metric Measurement and Other Modifications

The algorithms for computing the GSC and average
gradient per layer used in this work are described
more in depth in section 6. Here, we will focus on the
details of integrating the algorithms into FL topolo‐
gies. In both centralized and hierarchical topology,
the GSC and average gradient per layer is computed
after each local iteration using the whole training
set of the client in order to fully capture changes
in the gradient brought on by local computation. As
the hierarchical architecture involves the existence of
multiple local iterations per each global round, we
gather metrics after each of these iterations. Then
we analyze the diagrams constructed from all of the
measurements, as well as only those computed for the
last iteration before a global aggregation round. This
action is performed in order to determine the extent
of the information loss that could result from this
much more communicationally and computationally
effective scheme.

21

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

There is an open possibility of integrating the
computation of GSC and average gradient per layer
with the local training by using the gradients that are
already computed as a part of the training. We decide
to avoid it due to the assumptions presented in [31],
which referred to the whole available dataset instead
of just a batch. However, this opportunity may still
be explored in scenarios with small local training sets
available for each client.

To ensure that we minimize the impact of random
factors on the results obtained through experiments,
each of the trials has been conducted three times.
The ϐinal result of a selected trial is a mean of all of
the runs with additional information included about
the differences between them. Similarly, to increase
the quality of the results, each experiment has been
conducted for 50 global rounds instead of 25. In order
tominimize the amount of computation necessary, we
have decided to focus on two of the four FL topologies
described in this work ‐ the centralized topology, as
it’s the most commonly used and can therefore serve
as an effective baseline, and the hierarchical topology,
as it is the most vulnerable to the exploding gradient
problem fromall of the initially investigated examples.
Apart of the modiϐications described in this section,
the extended experiments are conducted according to
section 4.

8. Extended Results
The ϐirst part of our analysis focuses on examining

the behaviour of our scenarios and ensuring that it
agrees with our assumptions embedded in the exper‐
iment design. To accomplish this, we look at the train‐
ing accuracy curves.

Figures 12, 13, and 14 depict the training pro‐
cess conducted for the baseline, exploding gradient,
and vanishing gradient scenario, respectively. In all
three examples, the FL topology employed was cen‐
tralized. In the ϐirst, baseline scenario, the depicted
curve is smooth and reaches an aggregated accuracy
exceeding95%. In the second scenario depicted in Fig‐
ure 13, the ϐinal accuracy is signiϐicantly lower, with a
jagged curve and much more pronounced differences
between runs marked in the ϐigure by the light blue
color.

This indicates instability inherent in the exploding
gradient scenario. Finally, the training process visual‐
ized in Figure 14 is fully dysfunctional, with extreme
variations in aggregated accuracy, which is neverthe‐
less unable to exceed the thresholdof6%.Thismarks a
scenario with a vanishing gradient problem so severe
that the model is functionally unable to learn.

Figure 12. The accuracy training curve for centralized FL
in the baseline scenario

Figure 13. The accuracy training curve for centralized FL
in the exploding gradient scenario

Figure 14. The accuracy training curve for centralized FL
in the vanishing gradient scenario

Figures 15, 16, and 17 represent similar training
processes for the hierarchical FL topology. Here, the
training instabilities are even more pronounced for
the exploding and vanishing gradient scenarios (Fig‐
ures 16 and 17), resulting in much more extreme
changes in accuracy between training rounds and
runs.

Moving onto the analysis of our metric suite, in
Figure 18 we can observe the GSC values for all three
scenarios reenacted in a centralized FL architecture.
Here, the vanishing gradient problem is marked by
a GSC of 0 unchanging for the duration of the entire
run. This marks is as easily distinguishable without
any additional knowledge about the current training
accuracy of the gradient stability in other scenarios.

22

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

Figure 15. The accuracy training curve for hierarchical FL
in the baseline scenario

Figure 16. The accuracy training curve for hierarchical FL
in the exploding gradient scenario

Figure 17. The accuracy training curve for hierarchical FL
in the vanishing gradient scenario

Figure 18. Gradient scale coefficient (GSC) values for
centralized FL in different scenarios

Additionally, the GSC values allow all the scenarios
to be visually identiϐiable from each other, with the
scale of the values for the exploding gradient being
visibly larger than for the baseline. This may be ben‐
eϐicial for the iterative process of conducting multiple
FL training runs, as it would provide a developer with
information about the current gradient scale in the
context of other runs. For example, for a developer
seeking to ϐix an exploding gradient problem and test‐
ing a potential solution itwould be helpful to know the
scale of the GSC when compared to previous runs.

Unfortunately, it is not obvious whether the GSC of
a single runwouldbe sufϐicient to diagnose it as suffer‐
ing from a vanishing or exploding gradient problem.
There is some discussion about it being potentially
true in [31]. However, as the aforementioned work
focuses on themultilayer perceptron architecture, fur‐
ther research involving other model architectures is
still necessary.

Figure 19. Gradient scale coefficient (GSC) values for
hierarchical FL in different scenarios

Figure 20. Gradient scale coefficient (GSC) values
measured for the last local iteration for hierarchical FL in
different scenarios

Figure 19 showcases GSC values for different test
scenarios reenacted in a hierarchical FL system. The
GSC in these experiments is similar to analogous
results for the centralized topology both in scale and
clear separability between scenarios. Additionally, the
GSC depicted in Figure 19 seems to maintain traits
speciϐic to the hierarchical topology, such as periodic
changes in gradient caused by global weight averaging
and special vulnerability to gradient instabilities visi‐
ble for the baseline scenario.

23

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

Figure 20 depicts a simpliϐied version of the previ‐
ous diagram containing only the GSC values measured
after the last local iteration before the global compu‐
tation round. It can be noted that Figure 20 effectively
preserves most information from Figure 19, including
the scale and stability of GSC for a given scenario,
omitting only the visible indicators of periodicity.

Figure 21. Average gradient value per layer for
centralized FL in the baseline scenario

Figure 22. Average gradient value per layer for
centralized FL in the exploding gradient scenario

Figure 23. Average gradient value per layer for
centralized FL in the vanishing gradient scenario

Figures21, 22, and23present the average gradient
value for a given layer for experiments conducted on a
centralized FL system. The layers are numbered from
the input to the output, marking 1 as the layer closest
to the input and 3 as the layer closest to the output.
This is a simple yet effective visualization, as it allows
the viewer to easily compare gradient values between
layers.

In Figure 21 (baseline scenario), this means that
average gradient values per layer are both relatively
low and close to each other. Although the average
gradient value for layer 1 is often larger than for value
3, layer 1 frequently shifts and intersects with layer
3. We can contrast it with Figure 21 (exploding gra‐
dient scenario), where the average gradient of layer
1 is noticeably greater than layer 2 and 3 with a
large difference in scale. Figure 22 (vanishing gradient
scenario) marks a training process where layers 1
and 2 are extremely close to 0 throughout the whole
training, with the values of layer 3 varying largely
between iterations and runs. These clear differences
in plots indicate, that average gradient values per layer
as a metric may be enough to effectively recognize an
exploding or vanishing gradient problem in FL sys‐
tems.

Figures 24, 25, and 26 move onto depicting aver‐
age gradient values per layer for the hierarchical
topology. Here, the results are similar to the scenarios
simulated for the centralized system, if notably less
readable due to a larger amount of local iterations
(and therefore also gradientmeasurements). Interest‐
ingly, periodic drops in the average gradient of the ϐirst
layer depicted in Figure 25 seem to conϐirm our prior
suspicion about global weight aggregation serving as
a form of regularization.

Figures 27, 28, and 29 are very similar to Fig‐
ures 24, 25, and 26, with the only difference being
the amount of information depicted. Figures 27, 28,
and 29 contain only the average gradient values mea‐
sured per layer after the last local iteration in each
round. Interestingly, these limitations seem to inϐlu‐
ence the visualizations positively. The plots are now
easier to read, with Figure 27 depicting average gra‐
dients that are more clearly similar in scale. The only
important information lost is the periodicity in Fig‐
ure 28, which is not necessary to determine it to be
an example of the exploding gradient as the average
values of layer 1 remain visibly larger from layer 3.

The ϐinal gradient scale monitoring framework
therefore includes the GSC visualization (as shown,
for instance, in Figure 20) to enable easy and read‐
able gradient scale comparison for multiple runs of
the system, as well as the average gradient per layer,
which provides simple gradient problem diagnosis for
particular runs. The GSC should be displayed using
the logarythmic scale. To minimize additional compu‐
tational load caused by the monitoring, the metrics
should be computed only for the last local iteration
in centralized topologies with local groups (such as
hierarchical or hybrid).

9. Conclusion
Even though there is plenty of research focused on

many different aspects of the FL paradigm, we iden‐
tify a potential gap in the topic of effective diagnosis
and monitoring of FL systems. For instance, our ini‐
tial experiments showcase how differently a problem
commonly encountered in ML may present in more
sophisticated FL topologies.

24

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

Figure 24. Average gradient value per layer for
hierarchical FL in the baseline scenario

Figure 25. Average gradient value per layer for
hierarchical FL in the exploding gradient scenario

Figure 26. Average gradient value per layer for
hierarchical FL in the vanishing gradient scenario

Wepropose and test a potential monitoring frame‐
work designed for the early detection of such issues.
We conϐirm its ability to enable easy differentiation
between scenarios of vanishing, exploding, and stable
gradient in centralized and hierarchical FL systems
with the assumption of IID data. Along with an anal‐
ysis focused on the visual clarity of our results, we
investigate the possibility of a more communication‐
ally and computationally efϐicient approach by includ‐
ing only the measurements conducted after the last
local iteration.

Figure 27. Average gradient value per layer measured
for the last local iteration for hierarchical FL in the
baseline scenario

Figure 28. Average gradient value per layer measured
for the last local iteration for hierarchical FL in the
exploding gradient scenario

Figure 29. Average gradient value per layer measured
for the last local iteration for hierarchical FL in the
vanishing gradient scenario

Based on that, we introduce a joint tool including
the measurement of GSC and average gradient per
layer to enable lightweight and comprehensive gradi‐
ent monitoring. We include GSC to enable easy visu‐
alization of relative gradient stability in the context of
previous runs, as well as average gradient per layer to
allowadeϐinite diagnosis of the current run as affected
by the problem of vanishing or exploding gradients. In
the case of hierarchical FL, both should be computed
only for the last local iteration each round.

25

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

Our work afϐirms the need to further examine the
efϐicacy of existing tools designed for monitoring in
diagnostics in FL systems due to their complex, dis‐
tributed nature and unique problems such as client
dropout or diverging client distributions. An interest‐
ing research area we would like to shed light on can
also be found in testing tools like the metric suite
described in this work in environments simulating
varying, heterogenous sets of obstacles, including the
aforementioned client dropout, differences in local
data distribution, and bad hyper‐parameter selection.
Future work can also consider the inclusion of other
potentially suitable metrics, such as the Nonlinearity
Coefϐicient [30], which is an evolution of the Gradient
Scale Coefϐicient.

Notes
1https://assist‐iot.eu

AUTHORS
Karolina Bogacka∗ – Warsaw University of Technol‐
ogy, Plac Politechniki 1, 00‐661 Warszawa, Poland,
e‐mail: karolina.bogacka.dokt@pw.edu.pl.
Anastasiya Danilenka – Warsaw University of Tech‐
nology, Plac Politechniki 1, 00‐661Warszawa, Poland,
e‐mail: anastasiya.danilenka.dokt@pw.edu.pl.
Katarzyna Wasielewska-Michniewska – Systems
Research Institute, Polish Academy of Sciences,
Newelska 6, 01‐447 Warszawa, Poland, e‐mail:
katarzyna.wasielewska@ibspan.waw.pl.
∗Corresponding author

ACKNOWLEDGEMENTS
Thework of Kalina Bogacka and Anastasiya Danilenka
was funded in part by the Centre for Priority Research
Area Artiϐicial Intelligence and Robotics of Warsaw
University of Technology within the Excellence Initia‐
tive: Research University (IDUB) programme.

References
[1] Introducing Federated Learning into Internet of

Things ecosystems – preliminary considerations,
07 2022.

[2] A. Bellet, A. Kermarrec, and E. Lavoie, “D‐
cliques: Compensating noniidness in decentral‐
ized federated learningwith topology”,CoRR, vol.
abs/2104.07365, 2021.

[3] K. Bogacka, A. Danilenka, and K. Wasielewska‐
Michniewska, “Diagnosing machine learning
problems in federated learning systems: A
case study”. In: M. Ganzha, L. Maciaszek,
M. Paprzycki, and D. Ślęzak, eds., Proceedings
of the 18th Conference on Computer Science and
Intelligence Systems, vol. 35, 2023, 871–876,
10.15439/2023F722.

[4] Q. Cheng and G. Long, “Federated learning
operations (ϐlops): Challenges, lifecycle
and approaches”. In: 2022 International

Conference on Technologies and Applications
of Artiϔicial Intelligence (TAAI), 2022, 12–17,
10.1109/TAAI57707.2022.00012.

[5] L. Chou, Z. Liu, Z. Wang, and A. Shrivastava, “Efϐi‐
cient and less centralized federated learning”,
CoRR, vol. abs/2106.06627, 2021.

[6] A.‐I. Consortium. “D7.2 Pilot Scenario Implemen‐
tation – First Version”, 2022.

[7] X. Du, X. Chen, J. Cao, M. Wen, S.‐C. Cheung,
and H. Jin, “Understanding the bug characteris‐
tics and ϐix strategies of federated learning sys‐
tems”. In: Proceedings of the 31st ACM Joint
European Software Engineering Conference and
Symposium on the Foundations of Software Engi-
neering, New York, NY, USA, 2023, 1358–1370,
10.1145/3611643.3616347.

[8] S. Duan, C. Liu, P. Han, X. Jin, X. Zhang, X. Xiang,
H. Pan, et al., “Fed‐dnn‐debugger: Automatically
debugging deep neural networkmodels in feder‐
ated learning”, Security and Communication Net-
works, vol. 2023, 2023.

[9] H. Eichner, T. Koren, H. B. McMahan, N. Srebro,
and K. Talwar, “Semi‐cyclic stochastic gradient
descent”, CoRR, vol. abs/1904.10120, 2019.

[10] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran.
“An efϐicient framework for clustered federated
learning”, 2021.

[11] W. Gill, A. Anwar, and M. A. Gulzar. “Fedde‐
bug: Systematic debugging for federated learn‐
ing applications”, 2023.

[12] X. Glorot and Y. Bengio, “Understanding the dif‐
ϐiculty of training deep feedforward neural net‐
works”. In: Y. W. Teh and M. Titterington, eds.,
Proceedings of the Thirteenth International Con-
ference on Artiϔicial Intelligence and Statistics,
vol. 9, Chia Laguna Resort, Sardinia, Italy, 2010,
249–256.

[13] F. Godin, J. Degrave, J. Dambre, and W. De Neve,
“Dual rectiϐied linear units (drelus): A replace‐
ment for tanh activation functions in quasi‐
recurrent neural networks”, Pattern Recognition
Letters, vol. 116, 2018, 8–14.

[14] B. Hanin, “Which neural net architectures give
rise to exploding and vanishing gradients?”. In:
S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa‐Bianchi, and R. Garnett, eds., Advances in
Neural Information Processing Systems, vol. 31,
2018.

[15] Harshvardhan, A. Ghosh, and A. Mazumdar.
“An improved algorithm for clustered federated
learning”, 2022.

[16] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip
learning as a decentralized alternative to feder‐
ated learning”. In: J. Pereira and L. Ricci, eds.,Dis-
tributed Applications and Interoperable Systems,
Cham, 2019, 74–90.

[17] L. U. Khan, W. Saad, Z. Han, E. Hossain, and
C. S. Hong, “Federated learning for internet of

26

https://assist-iot.eu

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

things: Recent advances, taxonomy, and open
challenges”, CoRR, vol. abs/2009.13012, 2020.

[18] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine
learning operations (mlops): Overview, deϐini‐
tion, and architecture”, IEEE Access, vol. 11, 2023,
31866–31879, 10.1109/ACCESS.2023.3262138.

[19] J. Lee, J. Oh, S. Lim, S. Yun, and J. Lee, “Tornadoag‐
gregate: Accurate and scalable federated learn‐
ing via the ring‐based architecture”, CoRR, vol.
abs/2012.03214, 2020.

[20] A. Li, R. Liu,M. Hu, L. A. Tuan, andH. Yu, “Towards
interpretable federated learning”, arXiv preprint
arXiv:2302.13473, 2023.

[21] A. Li, L. Zhang, J. Wang, F. Han, and X.‐Y. Li,
“Privacy‐preserving efϐicient federated‐learning
model debugging”, IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 10, 2022,
2291–2303, 10.1109/TPDS.2021.3137321.

[22] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu,
and B. He, “A survey on federated learning sys‐
tems: Vision, hype and reality for data privacy
and protection”, IEEE Transactions on Knowledge
and Data Engineering, vol. 35, no. 4, 2023, 3347–
3366, 10.1109/TKDE.2021.3124599.

[23] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Edge‐
assisted hierarchical federated learning with
non‐iid data”, CoRR, vol. abs/1905.06641, 2019.

[24] Y. Liu, W. Wu, L. Flokas, J. Wang, and E. Wu,
“Enabling sql‐based training data debugging for
federated learning”, CoRR, vol. abs/2108.11884,
2021.

[25] H. B. McMahan, E. Moore, D. Ramage, and
B. A. y Arcas, “Federated learning of deep
networks using model averaging”, CoRR, vol.
abs/1602.05629, 2016.

[26] L. Meng, Y. Wei, R. Pan, S. Zhou, J. Zhang, and
W. Chen, “Vadaf: Visualization for abnormal
client detection and analysis in federated learn‐
ing”, ACM Trans. Interact. Intell. Syst., vol. 11, no.
3–4, 2021, 10.1145/3426866.

[27] M. A. Mercioni and S. Holban, “The most used
activation functions: Classic versus current”. In:
2020 International Conference on Development
and Application Systems (DAS), 2020, 141–145.

[28] N. Mhaisen, A. A. Abdellatif, A. Mohamed,
A. Erbad, and M. Guizani, “Optimal user‐edge
assignment in hierarchical federated learning
based on statistical properties and network
topology constraints”, IEEE Transactions on

Network Science and Engineering, vol. 9, no. 1,
2022, 55–66, 10.1109/TNSE.2021.3053588.

[29] R. Pascanu, T. Mikolov, and Y. Bengio, “On the
difϐiculty of training recurrent neural networks”.
In: International conference onmachine learning,
2013, 1310–1318.

[30] G. Philipp, “The nonlinearity coefϐicient‐a prac‐
tical guide to neural architecture design”, arXiv
preprint arXiv:2105.12210, 2021.

[31] G. Philipp, D. Song, and J. G. Carbonell. “The
exploding gradient problem demystiϐied ‐ deϐi‐
nition, prevalence, impact, origin, tradeoffs, and
solutions”, 2018.

[32] M. Roodschild, J. Gotay Sardiñas, and A. Will, “A
new approach for the vanishing gradient prob‐
lem on sigmoid activation”, Progress in Artiϔicial
Intelligence, vol. 9, no. 4, 2020, 351–360.

[33] Y. Shi, Y. E. Sagduyu, and T. Erpek. “Feder‐
ated learning for distributed spectrumsensing in
nextg communication networks”, 2022.

[34] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel,
“Man vs. computer: Benchmarking machine
learning algorithms for trafϐic sign recognition”,
Neural Networks, vol. 32, 2012, 323–332,
https://doi.org/10.1016/j.neunet.2012.02.016,
Selected Papers from IJCNN 2011.

[35] J. Wu, S. Drew, F. Dong, Z. Zhu, and J. Zhou.
“Topology‐aware federated learning in edge
computing: A comprehensive survey”, 2023.

[36] J. Wu, S. Drew, F. Dong, Z. Zhu, and J. Zhou,
“Topology‐aware federated learning in edge
computing: A comprehensive survey”, arXiv
preprint arXiv:2302.02573, 2023.

[37] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li,
N. Kong, D. Ramage, and F. Beaufays. “Applied
federated learning: Improving google keyboard
query suggestions”, 2018.

[38] D. Yin, Y. Chen, R. Kannan, and P. Bartlett,
“Byzantine‐robust distributed learning:
Towards optimal statistical rates”. In: J. Dy
and A. Krause, eds., Proceedings of the 35th
International Conference on Machine Learning,
vol. 80, 2018, 5650–5659.

[39] M. Zhang, E. Wei, and R. Berry, “Faithful
edge federated learning: Scalability and
privacy”, IEEE Journal on Selected Areas in
Communications, vol. 39, no. 12, 2021, 3790–
3804, 10.1109/JSAC.2021.3118423.

27

	Introduction
	Related Works
	Federated Learning Operations
	The State of FL Diagnostic Tools
	The Exploding Gradient Problem
	The Vanishing Gradient Problem
	Advances in Research on Topology of Federated Learning

	Experimental Setup
	Centralized
	Centralized with Dynamic Clusters
	Hierarchical
	Hybrid

	Initial Experiment Design
	Client Grouping and Communication Schema

	Initial Results and the Diagnostic Process
	Preliminary Metric Choice
	Gradient Scale Coefficient
	Average Gradient Per Layer

	Extended Experimental Setup
	Scenario Description
	Metric Measurement and Other Modifications

	Extended Results
	Conclusion

