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Abstract:
Federated learning (FL) involves joint model training by
various devices while preserving the privacy of their
data. However, it presents a challenge of dealing with
heterogeneous data located on participating devices.
This issue can further be complicated by the appear‐
ance of malicious clients, aiming to sabotage the train‐
ing process by poisoning local data. In this context,
a problem of differentiating between poisoned and
non‐identically‐independently‐distributed (non‐IID) data
appears. To address it, a technique utilizing data‐free
synthetic data generation is proposed, using a reverse
concept of adversarial attack. Adversarial inputs allow
for improving the training process by measuring clients’
coherence and favoring trustworthy participants. Exper‐
imental results, obtained from the image classification
tasks for MNIST, EMNIST, and CIFAR‐10 datasets are
reported and analyzed.

Keywords: federated learning, non‐IID data, label skew,
data poisoning, label flipping

1. Introduction
Federated learning (FL) [1] focuses on developing

a global model by coordinating learning on multiple
devices while maintaining the privacy of local data.
The typical process of FL consists of training rounds
and involves several steps: (1) the global model is
initialized on the server; (2) the subset of clients of
a speciϐied size is randomly chosen from all avail‐
able clients; (3) the global model is shared among
the selected subset of clients; (4) clients perform
local training with the received global model for a
limited number of epochs using their private data;
(5) clients return their model updates to the server;
and (6) model updates are aggregated on the server
into a new version of the global model [1].

Each of the default FL steps is open to changes and
reϐinements. Thus, the subset of clients for a training
round may be created not randomly, but by following
a strategy, clients may not send weight updates to
the server, but the results of SGD [1], or communi‐
cate full model weights. Moreover, aggregation of the
model updates on the server may not simply aver‐
age all received model updates as proposed in the
FedAvg algorithm, but prioritize one client’s updates
over another’s. For instance, by using the size of their
local datasets as weights [1], participants with big

local datasets are favored as they contribute more to
the new global model during aggregation.

Due to the privacy restrictions of FL, clients’ local
datasets remain on their local devices, making it
impossible to perform centralized data analytics and
infer properties of both global and local datasets.
Moreover, in real‐life cases, data may not be iden‐
tically independently distributed (non‐IID) among
clients, which was proved to cause problems for FL,
as the quality of the global model and its convergence
can be negatively impacted by the presence of such
data [2, 3]. Non‐IID data can be categorized into ϐive
types [4], i.e., (1) feature distribution skew (different
clients have variations in feature styles for the same
label); (2) label distribution skew (clients have vary‐
ing label distributions but similar features for spe‐
ciϐic labels); (3) same label, different features (differ‐
ent clients present different feature distributions for
the same label); (4) same features, different labels
(clients assign different labels to the same features);
and (5) quantity skew (differences in the amount of
data across clients).

In general, these data‐related skews are supposed
to be the result of the natural characteristics of the
data, highlighting the complexity and diversity of real‐
life federated datasets. However, another set of data
issues can come from malicious actors, which have
access to client devices and client data, resulting in a
security issue known as a data poisoning attack [5].
In this case, the adversary may perform data poi‐
soning attacks and aim to compromise the training
process, reduce the global model performance, and
cause incorrect model predictions during the infer‐
ence stage [6]. Despite poisoned data being different
from the non‐IID data problem, FL by default equally
protects the privacy of non‐IID and malicious clients,
naturally making the task of distinguishing between
themmore challenging.

Toaddress the challengesposedby label skewnon‐
IID data, the Adversarial Federated Learning (AdFL)
algorithmwas introduced [7]. This method originated
from the concept of adversarial attacks and is mainly
applicable to neural networks dealing with image
data. The AdFL algorithm allows for gaining valuable
insights about clients’ local datasets without request‐
ing any additional information from local devices by
utilizing synthetic data generated on the server.
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The algorithm improves the performance of global
models in the presence of label skew data and results
in more stable training and more balanced per‐class
accuracy of the global model.

This work is an extension of the research pre‐
sented in [7] and explores the possibility of using self‐
adversarial samples for distinguishing malicious non‐
IID clients from those that are benign, focusing on
untargeted and targeted label‐ϐlipping attacks.

Following this, in Section 2, related research on
data poisoning attacks in the presence of non‐IID data
within FL is outlined. Section 3 presents key concepts
of adversarial attacks. In Section 4, the AdFL algorithm
is described. Section 5 deϐines the data poisoning
attacks adopted in this paper. Section 6 covers the
experimental results and their analysis, collected from
MNIST [8], EMNIST [9], and CIFAR‐10 [10] datasets.
This work concludes with a summary of ϐindings and
future research suggestions.

2. Related Work
The data poisoning attacks in FL as a standalone

issue are being addressed in multiple ways. For
instance,malicious clients can be detected and ϐiltered
out from the training. Here, methods were proposed
to track the consistency of the client’s updates to
verify its intent [11], apply dimensionality‐reduction
and clustering techniques (such as kernel principal
components analysis and k‐means) [12], or using
Euclidean distance‐measure [13, 14] to distinguish
between malicious and benign clients and ϐilter out
suspicious clients. Another approach proposed is to
maintain a small clean training dataset and a sepa‐
rate model on the server, using them to assess the
trustworthiness of clients’ updates by comparing the
direction of local models updates with the server‐side
model update obtained from the clean dataset and
further using trustworthiness score as aggregation
weights for normalized clients’ model updates [15].
Another line of research focused on modifying the
aggregation strategy towards outlier resistance, for
example, is by taking not the mean, but the median
for each dimension from the model updates [16] or
trimming the updates before averaging [17] to avoid
extreme values. However, these methods mainly rely
on the assumption that benign clientswill have similar
model updates, which can not be guaranteed under
the non‐IID data.

To address the joint problem of possible data poi‐
soning attacks and non‐IID data, methods for both
malicious clients detection and non‐IID data miti‐
gation were proposed. For instance, the algorithm
utilizing a cosine similarity measure was presented
to assess clients’ contribution similarity, assuming
that benign clients will have more diverse gradi‐
ent updates than coordinated malicious clients [18].
Another approach suggested using a small proxy
dataset as a tool to perform on‐server optimization
to ϐind the best model updates fusion and mitigate
possiblemalicious clients effect by naturally assigning
them small aggregation weights [19].

A different solution proposed analyzing the crit‐
ical parameters of the local models to reliably iden‐
tify malicious clients and use it for weighted updates
aggregation [20]. An attack‐tolerant FL method was
also proposed, presenting local meta updates and
global knowledge distillation to mitigate possible
malicious clients effect on the global model [21].

Although the research has begun to simultane‐
ously address the problem of both non‐IID data and
potential data poisoning attacks in FL, the proposed
solutions can still rely on proxy datasets available on
the server side or complicate the local training process
with additional computations. Such assumptions may
not be feasible in some FL scenarios. Moreover, the
complexity of the non‐IID data problem and the vari‐
ety of data poisoning attack scenarios make it harder
to ϐind solutions that can satisfy both performance
and a variety of security goals, leaving this challenging
area open for further research.

3. Adversarial Federated Learning
Adversarial data are adopted by many FL algo‐

rithms. The common idea is utilizing adversarial tech‐
niques as data generators in order to (a) defend
the model against adversarial attacks [22, 23], or
(b) augment the quantity of locally accessible data
with synthetic samples [24–26]. This work extends
the applicability of the previously proposed alterna‐
tive method, incorporating adversarial data into FL.
3.1. Adversarial Attack

The essence of adversarial attacks lies in the ability
to modify a sample from the training data of a neural
network in a manner that is imperceptible to humans,
yet causes the trained network to incorrectly classify
what was once a correctly classiϐied sample [27]. This
phenomenon was illustrated to be caused by the abil‐
ity of the adversary to alter the target data sample in a
way thatmakes it cross the classiϐier’s decisionbound‐
ary, and, therefore, result in misclassiϐication [28].

The classiϐication of adversarial attacks falls into
two main categories: untargeted attacks, which sim‐
ply focus on causing any incorrect classiϐication, and
targeted attacks, where the goal is to trigger misclas‐
siϐication into a speciϐic class. Attack methodologies
are further divided into white-box attacks, when the
involved adversary has access to the model’s archi‐
tecture and parameters, and black-box attacks, which
rely solely on the attacker’s access to output data.
A set of gradient‐based algorithms was previously
presented that relies on the model’s gradients and a
loss function to create the necessary changes to the
sourcedata in order toperformanattack. For instance,
gradient‐based algorithms are: one‐step Fast Gradi‐
ent Sign Method (FGSM) [29], its iterative version I‐
FGSM [30], and its version enhanced with momentum
MI‐FGSM [31].
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In this study, themomentum iterative fast gradient
sign method (MI‐FGSM) is used to perform targeted
adversarial attacks [31] (see Equations 1 and 2).

𝑔𝑡+1 = 𝜇 ∗ 𝑔𝑡 +
∇𝑥𝐽(𝜃, 𝑥∗𝑡 , 𝑦))

||∇𝑥𝐽(𝜃, 𝑥∗𝑡 , 𝑦))||1
(1)

𝑥∗𝑡+1 = 𝑥∗𝑡 + 𝛼 ∗ 𝑠𝑖𝑔𝑛(𝑔𝑡+1) (2)

Here, 𝑔𝑡 represents the accumulated gradients, 𝑥∗𝑡
is the perturbed adversarial image in iteration 𝑡, 𝑦 is
a target class, 𝐽 is a loss function, 𝜇 is a decay factor
introduced for better attack success rate and 𝛼 is a
step size. At each iteration, 𝑥∗𝑡 is clipped in the vicinity
𝜖, to preserve the resulting adversarial image within
𝐿∞ distance from the source image.
3.2. Transferability of Adversarial Inputs

Adversarial inputs possess the ability to trans‐
fer across models, meaning that adversarial inputs
designed for one model can also cause mispredictions
from other models, with the transferability of adver‐
sarial samples being higher between models trained
on data and tasks that are similar. This phenomenon is
attributed to the fact that models addressing the same
task tend to develop similar decision boundaries. In
the context of FL, where clients work on the same task
with sharedmodel architecture and feature space, this
transferability is particularly useful. It was shown,
that adversarial samples generated by any client can
provide insights about local data distribution [7]. The
property of transferability of adversarial samples and
its relevance to decision boundaries of trained classi‐
ϐiers in FL formed the basis of the AdFL algorithm.

4. AdFL Algorithm
In the AdFL algorithm, adversarial images are uti‐

lized as an additional source of information to improve
and guide the training process. The generation of
these images is done on the server, using the models
that have been updated and a random noise sample
image as a starting point for the generation process.
This way, the adversarial images are generated in
a data‐free way, meaning, that no access to actual
clients’ data is needed. The speciϐic steps performed
by the server in the AdFL are outlined in Algorithm 1.

Note, that in the AdFL algorithm, theweights of the
model are communicated between clients and server.

In total, six steps summarize the AdFL algorithm:
1) During the ϐirst federated training round, all clients

receive the initialized global model, perform local
training, and return the resulting models back to
the server.

2) Updated models returned by clients are used to
generate adversarial samples (Section 4.1).

3) The estimation of the distribution of classes across
clients is performed using the generated adversar‐
ial samples, as discussed in Section 4.2.

4) Each client gets a CS calculated with the help
of updated models and the generated adversarial
samples (see Section 4.4 for details).

Algorithm 1 AdFL algorithm (Server); 𝐶𝑙 – client;
𝐶𝑙𝑒 – subset of clients picked for training on epoch
𝑒; global distribution – distribution of classes during
FL training; 𝑑𝑖𝑠𝑡𝑟𝑎𝑙𝑙 – estimated classes presence in
clients’ local datasets
Ensure: global model 𝑤0, global distribution, clients
ready
for 𝑒 in 𝑒𝑝𝑜𝑐ℎ𝑠 do

if 𝑒 == 0 then
𝐶𝑙𝑒 ← all clients

else
𝐶𝑙𝑒 , global distribution ← pick clients for

training (𝑑𝑖𝑠𝑡𝑟𝑎𝑙𝑙 , global distribution)
end if
for 𝐶𝑙 in 𝐶𝑙𝑒 do

𝑤𝐶𝑙
𝑒 ← run training(𝑤𝑒)

end for
adv data← create adv data([𝑤0

𝑒 , ...,𝑤𝐶𝑙𝑒𝑒 ])
if 𝑒 == 0 then

𝑑𝑖𝑠𝑡𝑟𝑎𝑙𝑙 ← estimate distribution(adv data)
end if
C𝑆[0−𝐶𝑙𝑒] ← calculate CS(adv data,𝑤[0,..,𝐶𝑙𝑒]𝑒 )
𝑤𝑒 ← FedAvg([𝑤[0,..,𝐶𝑙𝑒]𝑒 ], 𝐶𝑆[0−𝐶𝑙𝑒])

end for

5) The aggregation step utilizes clients’ coherence
scores as weights to form the next version of the
global model. This new global model is then dis‐
tributed to a new subset of clients, initiating the
next training round.

6) Thereafter, the client‐picking strategy, guided by
the global classes distribution (see Section 4.3),
regulates which subset of clients will engage in
the next round of training, and the process repeats
from step one, omitting the estimation of the dis‐
tribution of classes across clients.
It should be emphasized, that all steps introduced

by the AdFL that expand the classical FL pipeline are
performed on the server. The adversarial images cre‐
ation, client picking strategy, and coherence scores
calculation are covered in the next subsections.
4.1. Adversarial Inputs Creation

Adversarial data in the AdFL algorithm is created
based on the models returned by clients and does not
require actual clients’ data. Therefore, the adversarial
input generation starts from a random noise image
and is performed with the MI‐FGSM algorithm (see
Equations 1 and 2). This attack is parameterized by
𝜇, 𝛼, the number of steps, and the clipping bound‐
ary. As the adversarial inputs produced by the AdFL
algorithm are not used to perform actual adversar‐
ial attacks, the constraints on the amount of change
applied can be relaxed. For example, the number of
steps, 𝛼, and the clipping boundary can be viewed as
constraints on the algorithm so that the ϐinal adver‐
sarial image is not far from its source, therefore, they
were adjusted according to the objective.
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It was experimentally validated that going beyond
30 adversarial steps does not improve transferability,
thus, the number of steps was set to 30. The step size
𝛼 was set to 1, while the clipping boundary and 𝜇
were left unchanged, following the original MI‐FGSM
research.

Algorithm 2 outlines the process for creating
adversarial inputs, while the default federated steps
are not included.

Algorithm 2 Adversarial data generation
Ensure: targets← [0, ..., 𝐶 − 1]
Ensure: 𝑤[0,..,𝐶𝑙𝑒]𝑒 ▷ Updated models at epoch 𝑒
for 𝑡 in 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 do

for𝑤𝑖
𝑒 in𝑤[0,..,𝐶𝑙𝑒]𝑒 do

adv img← random noise[𝐶ℎ, 𝐻,𝑊]
for 𝑠𝑡𝑒𝑝 in num steps do ▷MI‐FGSM step

adv img𝑖𝑡 ← step(𝑤𝑖
𝑒 , adv img𝑖𝑡 , 𝑡)

end for
end for

end for

After the local training, each updated model
returned to the server is used to generate 𝐶 images,
i.e., one image is generated per class that is present in
the classiϐication task.

4.2. Local Distribution Estimation

As speciϐied in the Algorithm 1, the ϐirst training
round in the AdFL algorithm involves all clients in per‐
forming the local training. Thesemodels are then used
to create adversarial samples (Section 4.1). During the
research, it was determined that when one client’s
updatedmodelmakes predictions on adversarial sam‐
ples created by another client’s updated model at the
end of the ϐirst epoch, these predictions are indicative
of the speciϐic classes present in the local dataset of the
client that performed the predictions [7]. Therefore, at
the end of the ϐirst round, it is possible to estimate the
label distribution among all clients, that participated
in the training round.

Detecting labels’ presence in local data by inspect‐
ing the adversarial data predictions presents the
opportunity for further improvements in the feder‐
ated training process, based on the insights gathered.
However, it is worth emphasizing, that the discovered
label distribution is still an estimation.

4.3. Client‐picking Strategy

Once the classes in the clients’ local datasets are
estimated, a client‐picking strategy can be used to
reduce the effects of label skew in the local datasets. In
the AdFL algorithm, the inϐluence of label skew on the
training process is being addressed with a balanced
client‐picking.

The balanced client‐picking is performed by uti‐
lizing the information retrieved during the local dis‐
tribution estimation step described in the previous
subsection and aims at having the clients with diverse
local data label distributions picked for each training
round.

This strategy ensures equal representation of com‐
mon and rare classes in each training round, there‐
fore, continuously exposing the model to all possible
classes in the classiϐication task, leading to a more
balanced performance across all classes.

To track which classes were present on the clients
that participated in the training process, a global label
frequency vector of size 𝐶 is maintained on the server,
accumulating the number of clients that participated
in training epochs up to now and had a certain class 𝑐
in their local dataset. As anewsubset of clients is being
formed for a training round, the vector is updatedwith
the label distribution information of each client added
to the subset for this federated training round.

To maintain the balanced FL training and con‐
sistent involvement of all classes in the training, the
clients for each new federated round are picked in
such a way as to bring the values in the global fre‐
quency vector closer to a uniform distribution. To do
so, a Kullback–Leibler divergence is used (Equation 3).

𝐷𝑘𝑙(𝑃||𝑄) = ෍
𝑥∈𝑋

𝑃(𝑥)𝑙𝑜𝑔(𝑃(𝑥)𝑄(𝑥)) (3)

Therefore, prior to adding a certain client to a sub‐
set of clients for the training round, the KL‐divergence
is calculated with respect to the uniform distribution
and the global label frequency vector assuming that
this client is added to the training, i.e., its classes are
admitted to the global classes frequency. This tech‐
nique ensures that clients who possess rare labels in
their data are consistently included in the training.
4.4. Clients Coherence Measurement

Transferability of adversarial samples is not guar‐
anteedbydefault for all federated clients, as it relies on
the internal properties of themodel and thedata itwas
trained on. As presented in Section 4.2, examining the
predictions of the models that only completed their
ϐirst federated training round can help identify their
local distribution, since this is what can be seen in
the predictions themodels make based on adversarial
samples. Consequently, these predictions can identify
which classes are not in the local distribution, locating
nodes with rare data. However, this property can be
used not only for label distribution estimation but also
for assessing how close to each other the updated
clients’ models are. This assessment in the AdFL algo‐
rithm is called a coherence score (CS) and is employed
to ϐind clients with a high ability to correctly predict
adversarial samples as well as produce those that are
correctly predicted by other models.

Thus, the CS consists of two parts, i.e., the model’s
ability to (1) produce samples transferable to other
models and (2) predict adversarial samples from
other models. The calculation of these metrics is per‐
formed each training round after the updated client
models return to the server after performing local
training. Each updated model generates 𝐶 adversar‐
ial samples and makes predictions for all adversarial
samples generated by other updatedmodels returned
by clients participating in the current training round.
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After the predictions are done, the score calcula‐
tion proceeds with calculating the model’s ability to
predict adversarial images produced by other models
according to Equation 4. For eachmultiplication, there
is a binary indicator determining if the prediction for
the adversarial sample for class 𝑐 from model 𝑘 was
accurate and the class probability given by the model.
The results obtained for the model predicting its own
adversarial inputs are not included.

predicted others =
𝐾

෍
𝑘=1

𝐶−1

෍
𝑐=0

is correct𝑘,𝑐 ∗ prob.𝑘,𝑐

(4)
The same formula is used to assess the model’s

ability to produce transferable samples that are recog‐
nized by other models, where the correct predictions
are analyzed across the models that made predictions
of the samples produced by the currently evaluated
model.

The ϐinal CS is a summation of the two assessment
results and is calculated as:

coh. score = predicted others + was predicted (5)

The resulting normalized coherence scores are used
to favor models with good transferability and are
employed asweights during the updatedmodels aver‐
aging process, therefore, have a direct inϐluence on the
global model aggregation.

The AdFL algorithm can utilize coherence scores
to identify clientswhich cannot reliably classify adver‐
sarial inputs or create such inputs. This property of
the algorithm can be useful when dealing with data
poisoning attacks, that interfere with the client’s local
data during the training process. Moreover, in confor‐
mitywith the literature overview, it provides aweight‐
ing scheme for potentially assigning more importance
to benign clients over malicious ones. Therefore, this
property of CSs inspired this research, extending the
application of the AdFL algorithm beyond non‐IID
label‐skew scenarios.

5. Data Poisoning Attacks in FL
Data poisoning attacks can be classiϐied into two

categories based on the target of adversarial manipu‐
lation: clean data attacks and dirty‐label attacks [32].
The ϐirst type of attacks does not change the labels of
the data, on the contrary, it injects changes to the sub‐
set of training data [33] and does not require access
to data labeling, while the second attack type, changes
the labels of the samples inside the dataset, accord‐
ing to the adversary’s goal and leaving data features
unchanged [34].

As the non‐IID scenarios considered in this work
are represented by the label skew, the natural type of
attack to consider as its “companion” is a dirty label
label‐ϐlipping attack. Meaning, that in addition to the
limited classes being present inside the local data, it
can further be a subject of local data suffering from
labels being ϐlipped.

In these terms, data poisoning attacks can be
performed by federated clients. Here, the attack can
be described from the perspective of the number of
clients participating in the attack — whether there
is only a limited number of adversaries or if there
are many — as well as from the way the source data
labels are being affected, whether the adversaries do
not have a speciϐic strategy and the labels are ϐlipped
randomly [35], or they have a speciϐic objective and
ϐlip labels according to some rule [36].

In the current research, two label‐ϐlipping strate‐
gies are being studied: untargeted(random) label ϐlip‐
ping and targeted label ϐlipping, meaning that labels
for one class are consistently substituted by labels
from another class. In both scenarios, adversaries do
not have a way to see benign clients data distribu‐
tions, however, in the target label‐ϐlipping scenarios
malicious clients have a joint pair of source and target
labels for the attack. This pair is known to all adver‐
saries. The detailed description of attack scenarios
employed in this work is given in Section 6.4.

The random label‐ϐlipping attack primarily focuses
on the overall performance degradation of the global
model, while targeted attacks have a target class
whose performance they aim to damage. In order to
assess whether the targeted attacks were successful,
the Attack Success Rate (ASR) measure is employed
(Equation 6) with respect to the label whose perfor‐
mance is targeted.

𝐴𝑆𝑅 = number of successful attacks
total number of attacks (6)

It is alsoworth saying that in the presence of highly
skewed data partition with equal class probabilities
inside local data, random label ϐlipping results in a
softer attack scenario. For example, with 2 classes
being present on a local node, there are around 50%of
correctly assigned labels inside every class, as random
assignment is not prohibited from picking the actual
class.

6. Experimental Setup, Results, and Analysis
6.1. Datasets

For experiments, three image datasets were used
– MNIST [8], EMNIST [9], and CIFAR‐10 [10]. The
datasets represent tasks of varying difϐiculty for the
algorithms and are commonly utilized as benchmark
datasets in FL research. MNIST offers 10‐class, 28x28
grayscale images, and is often used as a basic image
classiϐication task. EMNIST expands the task with
hand‐written letters, increasing the number of classes
to 62, adding complexity to label‐skewed data, and
making targeted label attacks harder to spot and
counter. CIFAR‐10 further escalates the challenge,
introducing 10 classes, and 32x32 pixels RGB images
with more complex features.
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Figure 1. Probability of occurrence for 10 classes

6.2. Experimental Setup

The project was implemented in Python (version
3.7.9), using PyTorch machine‐learning framework
(version 1.10.0 [37]). Datasets and custom model
architectures were provided by the torchvision pack‐
age (version 0.11.1 [38]). All experiments were run
on GPU hardware, speciϐically, NVIDIA GTX 1070 and
NVIDIA A100.

6.3. Data Partitioning

Non‐IID label skew was emulated on local devices
according to the following procedure: (1) in the
parameters of the experiment, the number of unique
classes 𝐿 and the total number of data samples 𝑁 are
deϐined and applied for all clients, (2) random seed
is set for random operations reproducibility, (3) the
probability of each class appearing on the local model
is deϐined by taking a sample from a normal distribu‐
tion, (4) for each client a set of classes in their respec‐
tive local dataset is determined by drawing a sample
of size 𝐿 from the class probability distribution, (5) a
unique subset of total 𝑁 data samples of the selected
classes is assigned to the client, with each label having
𝑁/𝐿 samples in the local dataset.

As the number of unique label‐skew distributions
that can be generated with this approach is immense
and the results obtained across different distributions
cannot be simply aggregated due to these differences
in statistical properties of the datasets, the experi‐
ments were performed on a ϐixed data distribution.
This helped prevent data‐dependent features from
interfering with performance metrics and made it
more reliable to attribute differences in model per‐
formance to speciϐic algorithms and data poisoning
attacks used.

The probability of label occurrence used for clas‐
siϐication tasks with 10 classes (MNIST and CIFAR‐10)
is illustrated in Figure 1.

Due to thenormal distributionbeing used to create
the label probability distribution for the whole exper‐
iment, some classes naturally appear more often in
the local dataset thanothers. It additionally introduces
the global class imbalance to the FL pipeline. In a case
when the number of federated clients is low or the
number of unique classes in the local datasets is low,
some classes may not appear at all.

6.4. Assumptions and Data Poisoning Attack Model

In the considered attack scenarios it is assumed
that the server is fair and not compromised – only a
set ofmalicious clients are threatening the FL pipeline.
Moreover, the attackers are present in the FL pipeline
from the beginning and stay till the end of training – no
attacker leaves or joins the training in the process. The
design of the FL experiment is adapted from the Fools‐
Gold algorithm non‐IID scenario [18] and features 15
federated clients: 10 honest clients and 5 malicious
clients. However, changes were made to the data par‐
tition scenario compared to the reference experiment
according to the data partition strategy presented in
the previous section. These changes modify the data
distribution strategy and introduce the label skew to
the clients’ local datasets as adopted in the experi‐
ments designed for the algorithms focused onmitigat‐
ing the effects of non‐IID data.

According to the scenarios presented in Section 5,
three attacks were designed for experiments: (1)
untargeted random ϐlipping attack, (2) targeted attack
on a common label, (3) targeted attack on an uncom‐
mon label.

During the untargeted attack, every malicious
client randomly assigns labels to local data samples
based on the available local labels set. The targeted
attacks include malicious clients jointly picking their
target. First, malicious clients reveal the set of labels
present in their local data. Then,malicious clients esti‐
mate label distribution based on the observed local
distributions. The attack rule is deϐined as a pair of
labels 𝑐𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑐𝑡𝑎𝑟𝑔𝑒𝑡 , where 𝑐𝑠𝑜𝑢𝑟𝑐𝑒 is a label that will
be ϐlippedwith 𝑐𝑡𝑎𝑟𝑔𝑒𝑡 , therefore, 𝑐𝑠𝑜𝑢𝑟𝑐𝑒 performance
will be targeted. After setting the attack pair, every
malicious client inspects its data and looks for 𝑐𝑠𝑜𝑢𝑟𝑐𝑒 .
If found, the ϐlipping is performed according to the
attack rule. Moreover, the targeted attacks utilize non‐
IID data properties, deϐined in the previous section, by
targeting either common or uncommon labels based
on the empirical label distribution collected by the
malicious clients. Common labels are deϐined as labels,
whose probability of occurrence exceeds the 66%
quantile of the probability vector, while uncommon
are deϐined as those under the 66% quantile.

This way, targeted attack schemes naturally limit
the active number of active attackers, as they are
based on the empirical label probability distribution
estimated by attackers before training starts. Com‐
mon labels are not guaranteed to be present in every
attacker’s local data due to the 66% quantile thresh‐
old, making some potentially malicious clients benign
during training, however, still contributing to the
overall distribution estimation.

In the presented scenarios with 5 malicious feder‐
ated clients, an untargeted attack results in all 5 clients
being malicious during the training, a targeted attack
on common labels results in around 3 clients perform‐
ing the joint attack on a certain label, while the attack
on an uncommon label is done by onemalicious client,
therefore, reϐlecting the adaptation of the attacking
party to the observed non‐IID data distribution.
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Table 1. Hyperparameters used in the experiments

Parameter MNIST EMNIST CIFAR‐10
Total labels 10 62 10
Total clients 15 15 15
Labels on client 3 19 3
Local data size 600 1900 600
Learning rate 0.001 0.001 0.001
Batch size 10 10 10
Fed epochs 10 10 2
Adv. steps 30 30 30

6.5. Models and Hyperparameters

Convolutional neural networks (CNNs) were cho‐
sen for the image classiϐication tasks represented in
the datasets. The basic LeNet5 [39] architecture was
adopted for bothMNIST andEMNIST tasks. For CIFAR‐
10 a more sophisticated architecture was chosen,
namely, mobilenetv2 [40]. The pre‐trained version of
the model was provided by the torchvision package
with weights coming from the Imagenet [41] dataset.

Each experiment used the cross‐entropy loss func‐
tion and the Stochastic Gradient Descent optimizer.
The full list of parameters for experiments with
respect to datasets is given in Table 1.

For each algorithm, dataset, and attack type, the
training was performed 5 times with different model
initializations controlled by a set of seeds, and mean
results were used for further analysis.
6.6. Experimental Results and Analysis

To evaluate the AdFL algorithm’s ability to iden‐
tify malicious clients and mitigate their effect in the
presence of non‐IID data, two well‐known algorithms
were chosen as baselines for evaluation. The ϐirst one
is Multi‐Krum [13] which uses the Euclidean distance
metric to ϐind 𝑚 closest models to use for global
model aggregation, rejecting the rest of the updates
collected on the server during the FL training round.
This approach favors model updates that are similar
to each other and treats unusual updates asmalicious.
The second approach taken into comparison is the
FoolsGold (implementation for the experiments was
based on the source code of the algorithm provided by
the authors [18]). This approach employs a different
strategy and uses cosine similarity measure to iden‐
tify clients with similar gradient updates and assigns
them smaller importance during global model update.
This algorithm serves as an example of a weighting
approach that was initially evaluated on non‐IID data.
Moreover, it is an example of a defense that is not
suited for untargeted attacks [42]. Therefore, the two
selected baseline algorithms present two different
approaches to defense against label‐ϐlipping attacks.
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Figure 2.MNIST untargeted attack

As the AdFL algorithm was not designed as
a defense against data poisoning and the current
research aims at extending theusage of generated self‐
adversarial samples to the FL security domain, these
baselinemethods servemore as representatives of the
algorithms designed to defend FL training rather than
competitors in terms of defense efϐiciency.

It is important to note, that the Multi‐Krum algo‐
rithmexpects the server to knowbeforehand thenum‐
ber of potentialmalicious clients takingpart in eachFL
training round, as this parameter controls the number
of updates to be eliminated from the aggregation pro‐
cess. This condition was fulϐilled in the experiments,
and the Multi‐Krum algorithm was empowered with
the knowledge of the actual number of attackers who
performed the label ϐlipping in their local data. As
this parameter is set for the whole learning process
and does not adapt depending on the subset of clients
picked for a certain FL iteration, itwasdecided to elim‐
inate the client‐picking step from the experiments,
making all 15 clients always participate in each train‐
ing round. In such cases, the Multi‐Krum algorithm
always has a chance to eliminate all malicious clients
and for weighting algorithms (FoolsGold and AdFL),
the aggregation weights for each client can be tracked
throughout the whole training process uninterrupt‐
edly.

During all experiments, the aggregation weights
for the client are tracked for each epoch reported by
re‐weighting algorithms (AdFL and FoolsGold), while
for theMulti‐Krumalgorithm, the aggregationweights
are assigned equally for the client updates chosen
for aggregation, e.g. if there are 𝑚 chosen clients for
aggregation, each of the clients receives aggregation
weight of 1

𝑚 .
Each experiment was analyzed with respect to the

mean accuracy reached by the algorithm in a given
scenario and the mean aggregation weights that each
algorithm gave to the malicious/benign clients. Mean
values are calculated across all 5 repetitions per‐
formed for each unique algorithm, dataset, and attack
type.

The ϐirst dataset analyzed was MNIST. The results
for the untargeted attack for model accuracy and
meanbenign/malicious client aggregationweights are
shown in Figure 2.
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Figure 3.MNIST targeted attack on the common label
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Figure 4.MNIST targeted attack on uncommon label

Here it is visible, that the AdFL algorithm scores
ϐirst in accuracy, while the FoolsGold algorithm
reaches far lower accuracy (68% and 42.5% for the
AdFL and FoolsGold algorithms respectively). Among
the presented algorithms, Multi‐Krum gives the high‐
est weight to benign clients, however, at the begin‐
ning of training, for the ϐirst 10 epochs the weight of
malicious clients was higher. The FoolsGold algorithm
continuously favors malicious clients, while the AdFL
algorithmmanages to assign higher weights to benign
clients.

The comparison of three algorithms for the tar‐
geted attack on the common label on the MNIST
dataset is presented in Figure 3.

It can be seen, that both AdFL and FoolsGold algo‐
rithms manage to reach accuracy around 85%, while
Multi‐Krum scores signiϐicantly lower, despite prop‐
erly favoring benign clients duringmodel aggregation.
Here, FoolsGold shows a notable change in theweight‐
ing dynamic, with malicious clients ϐirst scoring high‐
est and then, after epoch 53, switching with benign
clients.

The comparison of three algorithms for the tar‐
geted attack on the uncommon label on the MNIST
dataset is presented in Figure 4.

The plot illustrates the AdFL algorithm reaching
higher accuracy, and it can be seen, that the weight
of the only malicious client was also different from
the benign, although the preference towards benign
clients is smaller than those of the Multi‐Krum algo‐
rithm. What is more, in the presented scenario, the
mechanism of the FoolsGold algorithm favoring the
unique updates can be seen in action, assigning the
highest weights to the malicious client.
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Figure 5. EMNIST untargeted attack
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Figure 6. EMNIST targeted attack on the common label

The comparison of three algorithms for the untar‐
geted attack on the EMNIST dataset is illustrated in
Figure 5.

Both Multi‐Krum and AdFL algorithms success‐
fully identifymalicious clients, while for the FoolsGold
algorithm, it takes time to start correctly re‐weighting
clients and the positive benign client weighting
dynamic vanishes as the training progresses after
epoch 100. Still, Multi‐Krum scores higher in both
accuracy and benign clients’ weight as it manages to
successfully ϐilter out all malicious clients, while the
AdFL algorithm only lowers their weights.

The targeted attack on the common label on the
EMNIST dataset is presented in Figure 6.

It is seen, that the Multi‐Krum algorithm manages
to ϐilter out some of the malicious clients, but scores
lower in accuracy,while the FoolsGold algorithm is not
able to reliably identify themalicious clients. However,
together with the AdFL algorithm it reaches an accu‐
racy of 60%, while the Multi‐Krum algorithm – only
57.5%. The AdFL algorithm shows a slight preference
for benign clients, with both malicious and benign
client weights changing in the narrow range. There‐
fore, the mean and standard deviation values were
computed for the difference (not absolute) between
aggregated weights assigned to benign and malicious
clients and are presented in Table 2.

The targeted attack on the uncommon label on the
EMNIST dataset is presented in Figure 7.
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Table 2.Mean and standard deviation of the difference
between aggregation weights for targeted attack on the
common label for the EMNIST dataset

Algorithm Mean SD
AdFL 0.0010 0.0015
FoolsGold 0.0000 0.0000
Multi‐Krum 0.0148 0.0125
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Figure 7. EMNIST targeted attack on the uncommon
label

Table 3.Mean and standard deviation of the difference
between aggregation weights for targeted attack on the
uncommon label for the EMNIST datase

Algorithm Mean SD
AdFL 0.0002 0.0015
FoolsGold 0.0000 0.0000
Multi‐Krum ‐0.0071 0.0000

This scenario was the most complex for all three
algorithms to deal with. As the classiϐication task, in
this case, consists of 62 unique labels, and one of
the rarest labels was poisoned by only one adver‐
sary, detecting the malicious client was not trivial.
Therefore, it can be seen that the Multi‐Krum algo‐
rithm failed to ϐilter out the malicious client, while
the FoolsGold algorithm, as in the scenario with the
targeted attack on the common label, fails to perform
re‐weighting at all. As for the AdFL algorithm, the
ϐluctuations of weights can be observed, however, the
weights are changing within a small range (Table 3
states the mean and standard deviation for the differ‐
ence between the aggregation weights of benign and
malicious clients), moreover, the benign clients are
being continuously favored only after epoch 70.

The comparison of three algorithms for the untar‐
geted attack on the CIFAR‐10 dataset is presented in
Figure 8.

In the observed scenario, the Multi‐Krum algo‐
rithm manages to correctly identify the malicious
clients and scores ϐirst in accuracy, while both the
FoolsGold and the AdFL algorithms show similar
lower accuracy of 32%compared to66% for theMulti‐
Krum algorithm. However, despite lower accuracy,
the AdFL algorithm still properly re‐weights clients,
favoringbenign clients from thebeginningof the train‐
ing, when the FoolsGold algorithm prefers malicious
clients.
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Figure 8. CIFAR‐10 untargeted attack
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Figure 9. CIFAR‐10 targeted attack on the common label
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Figure 10. CIFAR‐10 targeted attack on the uncommon
label

The comparison of three algorithms for the tar‐
geted attack on the common label on the CIFAR‐10
dataset is presented in Figure 9.

In the presented case, it can be observed, that all
three algorithms manage to correctly favor benign
clients and reach the accuracy of 62%, 59.5%, and
58% respectively for the Multi‐Krum, FoolsGold, and
AdFL algorithms.

The comparison of three algorithms for the tar‐
geted attack on the uncommon label on the CIFAR‐10
dataset is presented in Figure 10.

Here, the Multi‐Krum algorithm manages to ϐilter
out the malicious client in some experiments, while
the AdFL algorithm only decreases the weight of the
malicious client until epoch 90 and the FoolsGold algo‐
rithm continuously favors the malicious client.
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Table 4.Mean ASR(%) at the final training epoch for a
targeted attack on the common label

Dataset
Algorithm MNIST EMNIST CIFAR‐10
AdFL 3 11 93
Fools Gold 1 12 63
Multi‐Krum 2 10 0.25

Table 5.Mean ASR(%) at the final training epoch for a
targeted attack on uncommon label

Dataset
Algorithm MNIST EMNIST CIFAR‐10
AdFL 9 2 25
Fools Gold 84 3 58
Multi‐Krum 12 3 8

For targeted attacks, ASRs for each of the algo‐
rithms were also tracked with respect to the hold‐
out test dataset according to Equation 6. Thus, the
mean ASR on common and uncommon labels at the
end of the training for the MNIST, EMNIST, and CIFAR‐
10 datasets are shown in Table 4 and Table 5, respec‐
tively.

There is a notable difference in the ASR between
theMulti‐Krumalgorithmand theAdFL andFoolsGold
algorithms when it comes to the CIFAR‐10 dataset.
For targeted attacks on both common and uncom‐
mon labels, the Multi‐Krum algorithm reaches signif‐
icantly lower ASR (under 10%), while the other two
algorithms reach ASR between 25 and 93%. For the
EMNIST dataset, all three algorithms show similar
ASR regardless of the attack target. However, for the
MNIST dataset, the targeted attack on the uncommon
label shows an exceptionally high ASR for the Fools‐
Gold.

The dynamic of the ASR change for the attack on
the common label is presented in Figure 11.

Here, the differences in the range of ASR values
is further speciϐied with the dynamic throughout all
epochs, highlighting that for the MNIST dataset, the
end of the training aligned with the lowest ASR, while
for both EMNIST and CIFAR‐10 datasets, the end of the
training yielded a higher ASR, with the exception of
Multi‐Krum algorithm on the CIFAR‐10 dataset.

The changes in ASRs during the scenarios with the
targeted attack on the uncommon label are presented
in Figure 12.

It is clearly visible how the FoolsGold algorithm’s
tendency to favor unique updates impacts the ASR
on all three datasets. Another ϐinding here illustrates
that although the EMNIST dataset has a relatively low
absolute ASR, the ASR grows dynamically as training
progresses, showcasing how all three algorithms fail
to defend the model from targeted attacks regardless
of the target label.

0 20 40 60 80
0

20

40

60

0 50 100
0

5

10

0 50 100
0

50

AdFL FoolsGold Multi-Krum

ASR per algorithm on the common label

Epoch

Epoch

Epoch
A
S
R
 (

%
)

A
S
R
 (

%
)

A
S
R
 (

%
)

 (a) MNIST

(b) EMNIST

(c) CIFAR-10

Figure 11. ASR on the common label per algorithm per
dataset

To sum up, the experiments show that the label
skew combined with different label‐ϐlipping attacks
presents a challenging task for all three algorithms
when compared to one another. However, it can be
seen, that the aggregation weights given by the AdFL
algorithm to malicious and benign clients differ in
all experiments conducted, with benign clients being
favored by the algorithm. Still, the range of the differ‐
ence between these weights varies depending on the
dataset and attack type. Moreover, experiments on the
MNIST and CIFAR‐10 datasets show that the weights
of malicious and benign clients, reported by the AdFL
algorithm, tend to become even as the training pro‐
gresses, as more model aggregation happens, and the
accuracy of the global model increases.

Therefore, the synthetic samples generated by
both malicious and benign clients become similar and
receive similar coherence scores. Another observation
highlights that the ASRs for algorithms differ depend‐
ing on the dataset and attack type, with the Multi‐
Krum having the most stable mean ASR across all
datasets and attack targets, while both the AdFL and
FoolsGold algorithms showedhighASRs for theCIFAR‐
10 dataset, while EMNIST dataset was the most chal‐
lenging dataset to protect from the targeted attack
regardless of the target label being commonoruncom‐
mon among federated clients. Still, the AdFL algorithm
showed an ASR comparable with the selected defense
algorithms, despite not being designed with protec‐
tion from data poisoning attacks in mind.

10



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 3 2024

0 20 40 60 80

50

100

0 50 100
0

1

2

3

0 50 100
0

20

40

60

AdFL FoolsGold Multi-Krum

ASR per algorithm on the uncommon label

Epoch

Epoch

Epoch

A
S
R
 (

%
)

A
S
R
 (

%
)

A
S
R
 (

%
)

 (a) MNIST

(b) EMNIST

(c) CIFAR-10

Figure 12. ASR on the uncommon label per algorithm
per dataset

Table 6.Wilcoxon signed‐rank test p‐value and
significance

Dataset Attack type P‐value
All All 1.08 × 10−12
All Untargeted 6.1 × 10−5
All Targeted (common) 6.1 × 10−5
All Targeted (uncommon) 0.00061
MNIST All 6.1 × 10−5
EMNIST All 0.00116
CIFAR‐10 All 6.1 × 10−5

The signiϐicance of the aggregation weights differ‐
ence provided by the AdFL algorithmwas additionally
assessed with the help of the Wilcoxon signed‐rank
test [43] based on the mean aggregation weights for
malicious/benign clients inside each trial, i.e, for each
repetition inside the experiment, the mean aggre‐
gation weights were calculated for malicious and
benign clients across all epochs and used as a pair
for the Wilcoxon signed‐rank test. A separate test was
performed for all trials performed, for each dataset
(regardless of the attack type), and for eachattack type
(regardless of the dataset). The results are presented
in Table 6.

The Wilcoxon signed‐rank test revealed a signiϐi‐
cant difference across all considered combinations of
datasets and attack types. However, it is seen, that
the difference between malicious and benign clients
aggregation weights for the EMNIST dataset and for
targeted attacks on uncommon labels is less signif‐
icant than in the rest of the cases, which highlights
that for the AdFL algorithm, it is harder to operate in
presence of attacks aimed at uncommon labels and
within the classiϐication tasks with a bigger set of
unique labels.

7. Conclusion
In this work, the applicability of synthetic adver‐

sarial samples was explored in the context of non‐
IID data and data poisoning attacks. Three types of
attacks were performed on three benchmark image
classiϐication datasets and the results were compared
with respect to global model accuracy, the ability of
the algorithms to distinguish malicious clients from
benign, and the ASR of the targeted attacks.

The results revealed that utilizing adversarial data
on the server side during FL training can success‐
fully re‐weight malicious clients and give them less
importance during model aggregation for all untar‐
geted and targeted attacks. However, themagnitude of
the weight difference is not sufϐicient to fully mitigate
thedamageperformedby themalicious clients in com‐
parison with the security methods speciϐically crafted
to battle data poisoning attacks of certain types. Still,
as the AdFL algorithm showed the ability to favor
benign clients over malicious ones during the experi‐
ments conducted, future research can further improve
the results by ensuring a more powerful weighting
scheme to promote a greater inϐluence of the AdFL
coherence measure step on the model aggregation
and verify the AdFL algorithm performance in more
populated FL scenarios that include client picking and
introduce more diverse data distributions.
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