
Abstract:

1. Introduction

In this paper, we propose a new method for building an
environmental map in a self-organizing manner using vi-
sual information from a mobile robot. This method is based
on a Higher Rank of Self-Organizing Map (SOM ), in which
Kohonen’s SOM is extended to create a map of data distri-
butions (set of manifolds). It is expected that the “SOM” is
capable of creating an environmental map in a self-organi-
zing manner from visual information, since the set of visual
information obtained from each position in the environ-
ment forms a manifold at every position. We also show the
effectiveness of the proposed method.
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1.1. Aim of this study
The ability to build an environmental map based on

sensor information is necessary for an autonomous robot
to perform self-localization, identification of direction
and self-navigation. In animals, a map building capabi-
lity is very important to accomplish crucial behavior such
as predation, nest homing, path planning, and so on.
With regards to research on map building in animals,
O’Keefe and Dostrovsky identified “place cells”, which
respond preferentially to specific spatial locations in the
hippocampus of a rat [1]. The place cells encode the

observed sensory information as the animal explores its
environment. Moreover, O’Keefe and Nadel propounded
the theory that animals build a “cognitive map” within
the brain, based on research of the place cells [2]. It is
thus evident that animals build a cognitive map, which
plays a role in path planning using landmarks (i.e.,
particular information of local environments) coded by
the place cells. Furthermore, Taube et al. identified “head
direction cells”, which respond preferentially according
to the direction of the head [3]. The head direction cells
are seen to be involved in the map building, since it is
important to know one’s own direction before moving to
a destination. Therefore, a robot is expected to be able to
perform navigation automatically using a cognitive map
model that incorporates the mechanism of place cells and
head direction cells in its implementation. Moreover, it
may be possible to identify a mechanism from the model
akin to the map building of animals.

With regards to a technical model for map building,
we propose using a Higher Rank Self-Organizing Map
(SOM ) in this study. The SOM proposed by Furukawa [4]
is generally an extended model of Kohonen’s SOM [5]. The
SOM has a SOM-type modular network structure but with
nesting SOMs (Fig. 1(a)). It is the task of each SOM mo-
dule in the SOM to identify a manifold, which approxi-
mates a data vector set, thereby enabling the entire SOM
to find the formation of the fiber bundle in a self-orga-
nizing manner (Fig. 1b)). It has been suggested in [4]
that by using this feature, the SOM can, with unsuper-
vised learning, build a map, which is able to estimate the
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(a) (b)

Fig. 1. Architecture of SOM . (a) the SOM is a nest structure of SOMs. The position of each child SOM is kept with connecting
between neighborhood child SOMs by path. (b) Each child SOM approximates each episode with a graph map (i.e., a manifold)
through training of the episodes. The connecting the correspondence point of each map represents the fiber.
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location and azimuth direction independently, based
only on sets of the image data vectors observed from
omni-directional vision sensors. It has also been sugges-
ted that the SOM can, with unsupervised learning, build
a cognitive map with the features given below, using only
visual information; each module of the SOM represents
a place cell which codes the specific location, while each
reference vector unit in the SOM module represents
a head direction cell. However, a detailed verification has
not yet been done. Hence, this study aims to confirm
through various computer simulations, whether or not
the position and the azimuth direction can be estimated
from a map acquired by unsupervised learning of the
SOM .

Map building is an important theme in studies invol-
ving autonomous robots. Consequently, in recent years,
various methods for building an environmental map have
been proposed. A classical map building method, dead
reckoning, can estimate the location and pose (or direc-
tion) of a robot by calculating the displacement from an
internal sensor, such as a rotary encoder, acceleration
sensor, and so on. The proposal method builds the map
from only the arrangement of the memory of sensor
information, while the dead reckoning build the map by
using odometry information. On the other hand, several
methods for map building using external sensors such as
a laser range finder, vision sensor, and so on, have also
been proposed. The most popular method, known as
SLAM [6], is often used in map building using external
sensors [7], [8], [9]. SLAM can perform self-localization
and estimate the structure of the environment around
the robot simultaneously, making it a technologically ex-
cellent method for map building. Nevertheless, SLAM re-
quires a highly accurate observation model and locomo-
tion model, a priori, since it is necessary to understand
the correct structure of the environment [10]. The obser-
vation and locomotion models provide the physical mea-
surements of the environment and the physical location
of the robot using external sensors, respectively. The ob-
servation and locomotion models provide the physical
measurements of the environment and the physical loca-
tion of the robot using external sensors, respectively. The
SLAM builds the map based on measurements provided
from these models. However, it is difficult to develop the
models, which flexibly build the map, since the condi-
tions of the environment, and the sensors are nonstatio-
nary. Besides, the correspondence between SLAM and
map building in an animal’s brain has not yet been iden-
tified. In contrast, a method has been proposed, called
“topological map building”, that builds the map abstrac-
ted by a graph [11]. Nodes and edges in the graph repre-
sent specific locations (areas) and pathways between
areas, respectively. Typically, sensor information for
landmarks is memorized to nodes, while pathways bet-
ween landmarks are stored as edges. Then self-localiza-
tion and path planning can be performed by matching the
sensor information to the map. Since each node memo-
rizes the information that represents a local area, it is not
necessary to comprehend the correct structure of the en-
vironment. In addition, the method requires no physics
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1.2. Related works

models beforehand. Moreover, it is very interesting beca-
use this method resembles the cognitive map based on
place cells in the hippocampus of an animal’s brain. How-
ever, this method has two important issues: how are the
allocation of nodes and the connection of paths decided
in a self-organizing manner. As a solution to these issues,
applying a self-organizing neural network (SONN), such
as the Self-Organizing Map (SOM), Topology Represen-
ting Network (TRN), and so on, has been suggested [12].
Reference vectors of the SONN are the nodes that memo-
rize the information of specific areas. Moreover, paths
that connect reference vectors represent the pathway
between nodes. The SONN can perform the allocation of
nodes and the connection of paths in a self-organizing
manner with unsupervised learning. Tanaka pro-
posed an implementation model incorporating the place
cell in the hippocampus using a TRN [13]. This method
does not, however, build a cognitive map in the same way
as an animal, because GPS information is included as
training input. In addition, K. Chokshi proposed
a method for self-localization using the categorization of
vision information by an SOM [14]. Their method is also
an implementation model of the place cell. Nevertheless,
since these methods do not include the functionality of
the head direction cell, a robot cannot identify its own
direction.

In contrast, our proposal method builds the map that
can independently estimate the position and direction
from only the visual information with the unsupervised
learning. Each module of SOM is a node, which memo-
rizes the visual information that represents the local en-
vironment in a self-organizing manner. In addition, the
memorized visual information is ordered corresponding
to direction with the unsupervised learning. The features
are similar to ones of the place cells and head direction
cells in the hippocampus. Thus, the method incorporates
not only the functionality of the place cells, but also that
of the head direction cells. Moreover, the topology of the
map acquired with SOM and the topology of the environ-
ment’s geography are nearly equal. Therefore, the self-
navigation of the robot can be very easily performed by
using the map.

et al.

et al.
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2. Map building using an SOM2

In this study, we aim to show that the SOM can create
a self-organizing map in which the position and orienta-
tion of a robot can be estimated using only vision sensor
information. First, we explain how to acquire the map
using an SOM .

When a mobile robot equipped with a vision sensor
gets a birds-eye view of the surrounding area at place A in
the environment as shown in Fig. 2a), the episode of
vision sensor information is distributed as a manifold in
a multi-dimensional vector space (sensor space). If the
mobile robot observes vision sensor information by rota-
ting 360 degrees at place A, then the episode of vision
sensor information is distributed as a one-dimensional
toroidal manifold (Fig. 2b)). In addition, if the mobile
robot moves from place A to place B, the episode of
sensor information at place B forms a manifold near place
A (Fig. 2b)). Thus, the episodes observed at consecutive
places in the environment form continuous manifolds in
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(Fig. 1b)). Each child SOM approximates each episode
with a graph map (i.e., a manifold) through training of
the episodes. Here, training of each child SOM is per-
formed in such a way that the correspondence points on
the map in each child SOM are uniform. Thus, connecting
the correspondence point of each map represents the
fiber. Besides, the parent SOM orders the maps formed by
child SOMs. Therefore, an SOM can create a map of mani-
folds.

In building an environmental map using an SOM ,
a Ring SOM (RSOM), which approximates the distribution
of data vectors by a one-dimensional toroidal manifold,
is em-ployed for each child SOM (Fig. 3). Hereafter, this
SOM is referred to as the RSOM×SOM. The episode sets of
vision sensor information observed at various places are
given to the SOM as training episodes. After training,
each child SOM forms a manifold of each place’s episodes.
Here, the correspondence points in the map of each child
SOM are constant, that is, the environmental azimuth
direction is constant. Each reference vector unit of the
RSOM represents a head direction cell. Moreover, the pa-
rent SOM creates a map with the topology (i.e., topology
at the positions of the manifolds in sensor space) of the
positions in the environment preserved. As a result, the
map of the parent SOM itself represents a geometrical
map of the environment. Each module of parent SOM
represents the place cells. In addition, the azimuth direc-
tions of the environment in each RSOM are ordered in
a self-organizing manner.

Restrictions on the method, however, include that
the working environment is open without obstacles, in
which robot cannot pass through and robot’s view is
interrupted, and that similar visual information does not
exist in the environment. It is certainly possible to apply
the method in a non-limited environment by enhancing
the SOM . (This is addressed in subsection 5.1.) None-
theless, the aim of this study is to verify that an SOM can
create a self-organizing map in which the position and
orientation of a robot can be estimated using only vision
sensor information. The robot’s working environment for
this study is set as follows.

(A) The working environment is open without obstac-
les. Moreover, the robot can see faraway buildings and
mountains, etc. as shown in Figs. 4 and 5.

(B) The robot has an omni-directional camera as vi-
sion sensor.

(C) Only visual information is assumed to be observed
by the robot sensors.

In (A), under normal circumstances, it is preferable
that the robot can build the map while looking around
with a single directional camera. Building the preferable
map from partial information is difficult without enhan-
cing the algorithm for the SOM . Thus, in this study, the
episodes are acquired from an omni-directional camera.
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3. Algorithm for the SOM (RSOM×SOM)2

In this section, the algorithm for the RSOM×SOM is
explained. The RSOM×SOM is an SOM in which each child
SOM is replaced by a RSOM. The difference between an
RSOM and SOM is the definition of the distance measure
between reference vectors on the map, since the refe-
rence vector is allocated on a one-dimensional toroid in

sensor space (Fig. 2b)). Moreover, the correspondence
point between the manifolds corresponds to the shooting
angle of the vision sensor (that is, the azimuth direction
of the environment). Therefore, it is expected that the
position and azimuth direction can be estimated using
a map created based on the distance and correspondence
point between manifolds.

For this method, we employ the SOM proposed by
Furukawa. The SOM is an extension of the SOM in which
each reference vector unit in the conventional SOM is
replaced by an SOM module. In other words, the SOM is
a nest structure of SOMs (Fig. 1a)). In this paper, the SOM
module (child level) is called the “child SOM”, while the
whole SOM (parent level) is called the “parent SOM”. In
the SOM , sets (episodes) of vector data are given to the
SOM as training data. The vector data for each episode
are distributed on each of the subspaces in vector space

(a)

(b)

Fig. 2. The episode of vision sensor information is distribu-
ted as a manifold in a sensor space. If the mobile robot
moves from place A to place B, the episodes of sensor infor-
mation at place B from a manifold near place A. Moreover,
the correspondence point between the manifolds corres-
ponds to the shooting angle of the vision sensor.
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the RSOM, but on a lattice in the SOM. Otherwise they are
the same.

First, we define certain variables. Suppose there are
training episodes where each episode is composed of
data vectors. The episode is defined as

, where is the vector data. Furthermore,
the parent SOM is composed of RSOM modules. Each
RSOM module (i.e., child SOM) has reference vectors.
Now, the set of reference vectors in the RSOM module
is defined as .

In the training of a RSOM×SOM, the following three
processes are repeated: (1) evaluative process, (2) coope-
rative process, and (3) adaptive process. These processes
are explained below.

First, error between each data vector and each
reference vector in all child SOMs is calculated as follows:

. (1)

Here, the index of the best matching unit (BMU) is
defined as

. (2)
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(1) Evaluative process

Next, error in each child SOM module for each
episode is calculated as

(3)

where is the error of BMU for . Thus, error in
each child SOM module is the mean of for all data
vectors in one episode. Moreover, the best matching mo-
dule (BMM) for the episode is defined as

. (4)

In the cooperative process, the learning rates and
are calculated to decide the update values of all

reference vectors. is defined as follows:

(5)
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E

e l x E
e

l i-th

i

ij ij ij i

ij

i

i

ij

i

(2) Cooperative process
�

�

�

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles42

VOLUME 4,     N° 2     2010

Fig. 3. Architecture of RSOM×SOM that is engineering model of the place cells and the head direction cells. The map of the parent
SOM itself represents a geometrical map of the environment. Each reference vector unit of RSOM represents a head direction cell.
Moreover, Each RSOM represents the place cells.

Fig. 4. Type 1 environment. Fig. 5. Type 2 environment.
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where is the learning rate at the parent level, is
a neighborhood function, and represents the
distance between the module and the BMM on the
map. In addition, represents a neighborhood radius,
which decreases exponentially with learning step . In
this study, is defined as Eq. (7). and are
the maximum and minimum radii of the neighborhood
function, respectively. Moreover, is a time constant for
decreasing the speed of the neighborhood radius. Next,
is defined as follows:

(8)

(9)

. (10)

is the learning rate at the child level. Note that the
distance between the reference vector and the BMU of
the BMM on the map is calculated as Eq. (9). This
encourages the preservation of homogeneity in the map
of each child SOM. , , and are the maximum
radius, minimum radius, and time constant at the child
level.

All reference vectors are updated by

. (11)

In training an RSOM×SOM, the above three processes
are repeated.

This section presents the verification results for two
types of simulations. The purpose of the simulations is to
confirm whether the RSOM can build an environmental
map to estimate the position and head direction using
only vision sensor information.

Using the “Webots” robotics simulation software de-
veloped by Cyberbotics Ltd., we created two types of wor-
king environments for the simulations. Type 1 is an envi-
ronment in which four walls are painted red, blue, green,
and yellow (illustrated in Fig. 4). Type 2 is a park-like
working environment shown in Fig. 5. The area in which
the robot is able to move is a meter long by a meter wide
(Figs. 4 and 5). Furthermore, the robot has an omni-
directional vision sensor. Fig. 6 is an example of a panora-
mic image taken from the omni-directional vision sensor.
The size of the panoramic image is 512 x 64 pixels. In ad-
dition, the colors of the panoramic image are converted to
64 colors (in other words, red, green and blue are con-
verted to 4 colors).
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(3) Adaptive process

4. Simulation

4.1. Framework for simulations

Fig. 6. Upper image is example of panoramic image obser-
ved from vision sensor. The episode given to RSOM×SOM is
created from the panoramic image.

(A)Confirmation of estimating the position

(B)Confirmation of estimating the head direction

Next, we explain the episodes given to the RSOM×SOM.
An episode is created from the observed pano-
ramic image. Data vector is a color histogram vector ex-
tracted from an image (size 64x64) clipped from the pano-
ramic image. For all data vectors, the color histograms are
extracted evenly from the entire panorama image.

Next, the simulation flow is explained. First, the robot
moves around randomly in the environment, while simul-
taneously, observing the panoramic images at various
positions in the working environment. Next, the set of
episodes extracted from the panoramic images are given
to the RSOM×SOM as training episodes. Here, note that
X-Y coordinate is not included in training episodes. The
training of the RSOM×SOM is performed offline. After the
training process, two places (A) and (B) are verified to
confirm whether the RSOM has built an environmental
map that can estimate the position (brief X-Y coordinate)
and head direction using only vision sensor information
from the two types of environments.

The BMM on the RSOM×SOM is monitored when the ro-
bot moves to an arbitrary place in the working environ-
ments. If the RSOM×SOM can build a map in which the
topology of the geography is preserved, then the topology
of the robot’s places is almost the same as that of the
BMM’s positions.

First, after the robot is put in an arbitrary place, the
episode observed from this place is given to the RSOM×
SOM. The robot is turned to face north and then, a BMM
corresponding to the episode is decided. In addition,
a BMU in the BMM is decided after the color histogram
vector of the front image (64x64 pixels) is given to the
BMM. If the robot is rotated on the spot, the BMU will
change continuously on the map of the RSOM. Thus, the
map of the RSOM preserves the topology of the direction.
In addition, it is expected consistency be maintained in
the reference vectors of every module.

First, before the training of the RSOMxSOM, the robot
moved randomly in the environment, and simultaneously,
observed the set of panoramic images. In Fig. 7 the tra-
jectory of the robot is depicted by “-“ , while “ ” denotes
the positions at which the panoramic images were obser-
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4.2. Simulation results in Type 1 environment
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ved. Note that the direction of the robot was not fixed.
Panoramic images were observed from 200 positions; in
other words, there were 200 training episodes. In addi-
tion, there were 32 data vectors per episode.

Fig. 7. The trajectory of the robot at observation of visual
information in type 1 environment. The trajectory of the
robot is depicted by “-“, while “ ” denotes the positions at
which the panoramic images were observed.

Fig. 8. the trajectory of the robot in “(A) Confirmation of
estimating the position” in type 1 environment.

Fig. 9. The result of map building using RSOM×SOM in type 1
environment. The lattices denoted by letters of the alphabet
are the BMMs at the positions shown in Fig. 8.

�

The results of “(A) Confirmation of estimating the
position” are shown in Figs. 8 and 9. Fig. 8 shows the tra-
jectory of the robot. In addition, Fig. 9 shows the RSOM×
SOM’s map in which each lattice corresponds to an RSOM
module. The episodes observed at positions “A” to “T” in
Fig. 8 were given to the RSOM×SOM as test data. Moreover,
the lattices denoted by letters of the alphabet in Fig.9 are
the BMMs at the positions shown in Fig. 8. Thus, it is
possible for an RSOM×SOM to build a map that preserves
the topology of the geography. The same result was obtai-
ned consistently despite training being repeated several
times. The results of “(B) Confirmation of estimating the
head direction” are shown in Figs. 10 a), (b), and (c). Each
figure is a result at putting the robot on A, F, and J places
in Figure 8, respectively. Having been placed at each po-
sition, the robot was rotated 360 degrees in intervals of 5
degrees. In Figs. 10a), (b), and (c), the relationship bet-
ween the head direction of the robot and the BMU is
shown. These results confirm that the head direction of
the robot and the BMUs change continuously. Moreover,
the head direction was able to be estimated by BMU easily.

(a)

(b)

(c)

Fig. 10. The result of “(B) Confirmation of estimating the
direction” in type 1 environment. (a), (b), and (c) are the
relationships between head direction of robot and RSOM’s
unit at position A,F, and J in Fig. 8 respectively.
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Fig. 11. The trajectory of the robot at observation of visual
information in type 2 environment.

Fig.12. the trajectory of the robot in “(A) Confirmation of
estimating the position” in type 1 environment.

Fig.13. The result of map building using RSOM×SOM in type
2 environment. The lattices denoted by letters of the
alphabet are the BMMs at the positions shown in Fig. 12.

4.3. Simulation results in Type 2 environment
Fig. 11 shows the trajectory of the robot in environ-

ment of Fig. 5. The panoramic images were observed at

200 positions; in other words, there were 200 training
episodes. In addition, there were 32 data vectors per epi-
sode. The results of “(A) Confirmation of estimating the
position” are shown in Figs. 12 and 13. These results sug-
gest that an RSOM×SOM is able to build a map that pre-
serves the topology of the geography even if the visual
information varies. The results were consistent despite
training being done several times. The results of “(B)
Confirmation of estimating the head direction” are shown
in Figs. 14. Each figure is a result at putting the robot on
A, G, and K places in Figure 14, respectively. In the re-
sults, BMU corresponding to the head direction of the ro-
bot has not been continuously changed. These results
suggest that estimation of the head direction was diffi-
cult because of the existence of a similar color histogram.

We have described map building using an SOM in
a complex environment containing obstacles and similar

(a)

(b)

(c)

Fig.14. The result of “(B) Confirmation of estimating the
direction” in type 2 environment. (a), (b), and (c) are the
relationships between head direction of robot and RSOM’s
unit at position A,G, and K in Fig. 12, respectively.

5. Discussion

5.1. Map building in complex environments
2
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vision information. In an adaptation of the SOM , child
SOMs (i.e., place cells) are allocated to unreachable pla-
ces, since the parent SOM is fixed in the lattice topology.
A solution to this problem is to use a self-organizing neu-
ral network as the parent SOM, such as the NG and TRN,
where the network topology is not fixed. It is shown in [4]
that the parent and child of the SOM can be designed
using any SONN, besides the SOM. It is expected that the
place cells are allocated only to the subspace in which in-
put episodes are distributed, by replacing parent SOMs
with NGs. Besides, when similar vision information exists,
then it is considered that it is necessary to introduce the
method of the map building including a time transition to
the algorithm of SOM .

In this study, the color histogram was used as a simple
feature extraction, since the study aims to verify the map
building by SOM . It was shown that the map building
from only color information was possible by the simula-
tions. However, it is difficult in the real environment to
distinguish the local environment from only color infor-
mation. Therefore, the technique for recognizing the en-
vironment such as SIFT [15] is requested to be used as
a feature extraction. 5.3. RSOMxSOM’s responses for chan-
ging environment.
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2

2

5.2. Feature extraction from vision information

Fig. 15. Type 2 environment to which the human is added.

Fig.16. The result in type 2 environment to which the
human is added.

Even if some of the environment change, it is possible
to estimate the position and direction with map that was
built by training of the SOM . We experimented as follows
to verify the issue. First, the map was built in the type 2
environment. Next, a human’s object was put on the envi-
ronment (Fig.15). Namely, some of the environment was
changed with the human’s object. Final, (A) and (B) of si-
mulation were verified. The results are shown to Fig.16.
BMMs on the map changed as shown in Fig.16 when the
robot was moved as shown in Fig.12 on the environment.
There is little difference between result (Fig.13) of the
environment where the human’s object is not put and this
result (Fig.16). Thus, it is suggested that a part of change
not influence the position estimation.

In this paper, we confirmed that the SOM could build
a cognitive map that includes features of the place cells
and head direction cells. It was shown that both the po-
sition and the azimuth direction could be estimated from
the map acquired by unsupervised learning of the SOM .
The SOM model is not based on the neurological function
of the hippocampus, but is modeled technologically in
a topological way. A model that imitates the function of
the cognitive map in animals more closely can be develo-
ped by creating an algorithm that introduces a time tran-
sition of information into the SOM .
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