
Open Access. © 2024 Michał Kassjan�ski et al., published by Sciendo. This work is licensed under the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 License

VOLUME 18, N∘ 3 2024
Journal of Automation, Mobile Robotics and Intelligent Systems

EFFICIENCY OF ARTIFICIAL INTELLIGENCE METHODS FOR HEARING LOSS TYPE
CLASSIFICATION: AN EVALUATION

EFFICIENCY OF ARTIFICIAL INTELLIGENCE METHODS FOR HEARING LOSS TYPE
CLASSIFICATION: AN EVALUATION

EFFICIENCY OF ARTIFICIAL INTELLIGENCE METHODS FOR HEARING LOSS TYPE
CLASSIFICATION: AN EVALUATION

EFFICIENCY OF ARTIFICIAL INTELLIGENCE METHODS FOR HEARING LOSS TYPE
CLASSIFICATION: AN EVALUATION

Submitted: 9th December 2023; accepted: 26th March 2024

Michał Kassjański, Marcin Kulawiak, Tomasz Przewoźny, Dmitry Tretiakow, Jagoda Kuryłowicz, Andrzej Molisz,
Krzysztof Koźmiński, Aleksandra Kwaśniewska, Paulina Mierzwińska‑Dolny, Miłosz Grono

DOI: 10.14313/JAMRIS/3‐2024/19

Abstract:
The evaluation of hearing loss is primarily conducted by
pure tone audiometry testing, which is often regarded
as the gold standard for assessing auditory function.
This method enables the detection of hearing impair‐
ment, which may be further identified as conductive,
sensorineural, or mixed. This study presents a compre‐
hensive comparison of a variety of AI classification mod‐
els, performed on 4007 pure tone audiometry samples
that have been labeled by professional audiologists in
order to develop an automatic classifier of hearing loss
type. The tested models include random forest, support
vector machines, logistic regression, stochastic gradient
descent, decision trees, convolutional neural network
(CNN), feedforward neural network (FNN), recurrent neu‐
ral network (RNN), gated recurrent unit (GRU) and long
short‐term memory (LSTM). The presented work also
investigates the influence of training dataset augmenta‐
tion with the use of a conditional generative adversarial
network on the performance of machine learning algo‐
rithms, and examines the impact of various standard‐
ization procedures on the effectiveness of deep learning
architectures. Overall, the highest classification perfor‐
mance was achieved by LSTM, with an out‐of‐training
accuracy of 97.56%.

Keywords: classification, hearing loss types, pure‐tone
audiometry, RNN, LSTM, evaluation

1. Introduction
Hearing is regarded as a vital sensory organ, as it

furnishes us with crucial insights into our surround‐
ings. It enhances our perception of the environment by
complementing our visual and tactile senses, thereby
facilitating an extensive comprehension of our envi‐
ronments. Furthermore, possessing adequate audi‐
tory perception allows us to engage in effective com‐
munication, maintain our safety, and receive gratiϐica‐
tion fromadiverse rangeof audio activities, suchas lis‐
tening to music or watching theatrical performances.

In consequence, hearing loss haswide‐ranging and
signiϐicant consequences,which encompass, inter alia,
the inability to engage in communication with others,
as well as a delay in the acquisition of language skills
in youngsters.

This can result in social isolation, which in
turn may lead to feelings of loneliness and frustra‐
tion, especially in elderly individuals experiencing
impaired hearing. According to data presented by the
World Health Organization (WHO), the current global
prevalence of hearing loss affectsmore than 1.5 billion
people, of which 430 million suffer from moderate to
severe hearing loss in their superior ear. As stated
by the WHO, it is projected that by 2050, almost 2.5
billion individuals would experience varying levels of
hearing impairment, and at least 700 million of them
will need rehabilitation treatments [1]. At the same
time, however, WHO also claims that almost half of all
cases of hearing loss can be avoided by implementing
public health interventions. Additional reductions in
hearing impairment can be achieved by conducting
screenings and implementing early interventions dur‐
ing childhood, such as utilizing assistive devices or
considering surgical alternatives.

The evaluation of hearing loss is primarily con‐
ducted by pure tone audiometry testing, which has
been considered as themost dependable approach for
assessing auditory function. The procedure involves
presenting pure tones at speciϐic frequencies, either
through headphones (air conduction) or by using a
vibrator placed on themastoid section of the temporal
bone (bone conduction). The objective is to ϐind the
lowest level at which the individual can perceive the
sound, known as the threshold, for each frequency
[2]. The results of a hearing test are presented on an
audiogram, which allows for the identiϐication of the
particular type and degree of hearing impairment.

In medical practice, the classiϐication of hearing
loss is determined by the conϐiguration, severity, type
(location of lesion), and symmetry found in the out‐
comes of pure‐tone audiometry examinations.

The type of hearing loss may be categorized as
conductive loss, which is caused by problems in the
outer or middle ear, or sensorineural loss, which is
a result of difϐiculties in the inner ear and auditory
nerve. Alternatively, it could be a combination of both,
known as mixed hearing loss. This classiϐication must
be performed by professional audiologists after each
pure tone audiometry test. Particularly problematic
on a global scale is the scarcity of specialized audiol‐
ogists; in nearly 93% of low‐income nations, there is
fewer than one audiologist per million citizens [1].
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Given the ϐinancial and social obstacles in reducing
the large discrepancy between the demand and supply
of hearing specialists, it is important to investigate
the capability of artiϐicial intelligence (AI) methods in
resolving this issue. An automated decision support
system could potentially offer a range of beneϐits, from
minimizing human errors to entirely expediting the
evaluation of pure‐tone audiometry tests to general
practitioners. The development of such a system could
lead to a reduction in the workload required by spe‐
cialists and a decrease in thewaiting time for patients’
diagnoses. Moreover, practical application of such a
systemwould necessitate the establishment of clinical
guidelines and best practices, ensuring that health‐
care providers adhere to a uniform treatment process,
improvingpatient diagnosis anddecreasing treatment
variability.

In the above context, the paper presents a compar‐
ison of machine learning and deep learning methods
applied to the classiϐication of 4007 tonal audiometry
test results that were previously analyzed and labeled
by expert audiologists. The objective of this study was
to examine the efϐicacy of different artiϐicial intelli‐
gence (AI) techniques when utilized with raw tone
audiometry data. The latter is particularly signiϐicant
because pre‐classiϐied pure tone audiometry data is
relatively difϐicult to obtain in large quantities, which
is why no prior works had the opportunity to perform
an in‐depth classiϐication using state‐of‐the‐art meth‐
ods.

Furthermore, the presented work will serve as a
basis for selecting an optimal model for classifying
different types of hearing loss in clinical settings.

This article is an extension of the research pre‐
sented in the 18th Conference on Computer Sci‐
ence and Intelligence Systems FedCSIS 2023 during
the Doctoral Symposium—Recent Advances in Infor‐
mation Technology (DS‐RAIT) [3]. The study was
expanded to include several new AI models and pro‐
vide a more thorough assessment of the applied deep
learning algorithms, including an examination of the
impact of various data preprocessing methods. More‐
over, the extended paper also discusses the effects
of expanding the training dataset with the use of a
generative adversarial network (GAN).

2. Literature Review
Research on automatic audiometry data classiϐica‐

tion has been ongoing for an extended period of time.
In past years, several endeavors have been made to
develop an automatic classiϐication system that is suf‐
ϐiciently accurate to justify its practical implementa‐
tion. The papers can be categorized into two primary
themes: one related to the determination of initial
conϐigurations of hearing aids, and the other focused
on the classiϐication of hearing loss types. In the lit‐
erature there are numerous publications that discuss
the former subject [4–6]; however, the subject of auto‐
matic classiϐication of different forms of hearing loss is
substantially less explored.

The ϐirst attempt at an automated classiϐier of
hearing loss types was done by Elbaşı and Obali in
2012 [7] who carried a comparative analysis of vari‐
ous methods for identifying the type of hearing loss,
including the implementation of multilayer percep‐
tron (MLP) mode classiϐiers, Decision Tree C4.5, and
Naive Bayes. The investigation was conducted on a
dataset of 200 samples, which were classiϐied in four
distinct groups: normal hearing, sensorineural hear‐
ing loss, conductive hearing loss, and mixed hearing
loss. The input data was formatted as a sequence
of numerical values that represented decibels, which
corresponded to constant frequency levels. The Deci‐
sion Tree (C4.5) approach produced an accuracy of
95.5%, the Naive Bayes method achieved an accuracy
of 86.5%, and theMLP algorithmobtained an accuracy
of 93.5%.

A different method, which focused on raster
images instead of tabular data, was presented several
years later by Crowson et al. (2020) [8], who classi‐
ϐied audiogram images using the ResNet model into
threedistinct hearing loss categories (conductive, sen‐
sorineural, or mixed) in addition to normal hearing. A
dataset consisting of 1007 audiogramswasutilized for
both training and testing objectives. Insteadof starting
the classiϐier training process from the beginning, the
scientists implemented transfer learning for training
the classiϐier by utilizing well‐established raster clas‐
siϐication models. The classiϐication accuracy of this
approach reached 97.5%.

Overall, the integration of machine learning with
enhanced computational resources in cutting‐edge
hardware architectures holds the promise of produc‐
ing quicker overall test outcomes and more compre‐
hensive assessments in the ϐield of audiology [9].
Regarding the categorization of hearing loss types,
the currently suggestedmethods exhibit classiϐication
accuracy ranging from 86% to 97%. Although this
accuracy is remarkably high, it still allows for a sig‐
niϐicant margin of error. Furthermore, although the
audiogram classiϐier developed by Crowson et al. [8]
demonstrated the highest accuracy thus far, it is not
suitable for analyzing the original tabular data gen‐
erated by tonal audiometry, as it is designed only
for image classiϐication. Prior to classiϐication, the
datasets must be transformed into a speciϐic format
of audiogram images. Although audiograms gener‐
ally have a similar structure, those produced by dif‐
ferent tools can signiϐicantly differ in form and con‐
tent. Some audiometry software generates individual
audiograms for each ear, whereas others combine the
data from both into just one audiogram. This poses
a considerable difϐiculty when attempting to analyze
all cases in a comprehensive manner. Hence, an image
classiϐier is not suitable as the central component of a
ϐlexible system for categorizing pure tone audiometry
results.
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In addition, the aforementioned studies which
attempted to create hearing loss classiϐiers were con‐
ducted using very small datasets. The sample sizes
in the studies conducted by Elbaşı and Obali [7] and
Crowson et al. [8] ranged from 200 to 1007 test
results, respectively. With larger datasets, AI models
can effectively capture a greater number of unique
cases of hearing loss, resulting in more unbiased out‐
comes.

3. Methodology
The objective of this study was to evaluate the

effectiveness of several artiϐicial intelligence (AI) tech‐
niques in classiϐication of pure tone audiometry data.
The performance of different algorithms was evalu‐
ated bymeans of the accuracywithwhich each sample
was classiϐied as sensorineural hearing loss (S), mixed
hearing loss (M), or conductive hearing loss (C) by
each method.
3.1. Data

The study employed a dataset consisting of 4007
samples, which included the results of pure tone
audiometry tests conducted by doctors at the Depart‐
ment of Otolaryngology of the University Clinical Cen‐
tre in Gdansk between 2017 and 2021. Figure 1 illus‐
trates the distribution of the data across different
classes. There are 674 examples of conductive hear‐
ing loss, 1594 instances of mixed hearing loss, and
1739 samples of sensorineural hearing loss. The class
imbalance arises from the patient treatment proto‐
cols implemented by medical institutions. Conductive
hearing loss typically results from pathology affect‐
ing the ear canal, obstructing the passage of air. The
diagnosis of this condition is usually made with an
otoscope during the initial examination of the patient,
thus eliminating the requirement for a pure‐tone
audiometry test.

Each patient contributed amaximumof two exam‐
ination results, with one result assigned to the left ear
and the other to the right ear, therefore eliminating
any data redundancy for the same patient and assur‐
ing a sufϐicient diversity of data.

The hearing of the patients was assessed using
pure tone audiometry in accordance with the guide‐
lines set forth by the American Speech‐Language‐
Hearing Association (ASHA) [10]. Every experiment
was performed within soundproof enclosures (ISO
8253, ISO 8253). The TDH39P headphones were used
for air conduction testing, while the Radioear B‐71
bone‐conduction vibratorwas employed for bone con‐
duction testing.

Figure 1. The class proportions in the input dataset

Alongside anaudiogram,which is a standardvisual
representation of pure‐tone audiometry test ϐindings,
audiology software produces XML ϐiles that contain
comprehensive data on the tonal points in the audio‐
gram. This study employs XML ϐiles containing raw
audiometry data, concentrating on ϐive fundamental
frequencies (250 Hz, 500 Hz, 1000 Hz, 2000 Hz and
4000 Hz) acquired using both bone as well as air
conduction.
3.2. Dataset Expansion

Because the size of the training dataset is rather
small for machine learning standards, during the pre‐
sented research this database was expanded through
the application of a conditional generative adversarial
network [11]. A generative adversarial network (GAN)
is a deep learning network that has the ability to
produce data that closely resembles the properties of
the training data it was provided with. A conditional
generative adversarial network (CGAN) is a variant
of the GAN architecture that incorporates labels as
additional information during the training phase. A
CGAN comprises a pair of interconnected networks
that undergo joint training:
1) Generator—this network takes a label and a ran‐

dom array as input and produces data that has
the same structure as the training data samples
associated with the given label.

2) Discriminator—this network aims to categorize
observations as “real” or “generated” by using
labeled batches of data that include observations
fromboth the training data and the generated data.
In order to train a conditional GAN, it is necessary

to concurrently train both networkswith the objective
of optimizing the performance of both. This involves
training the generator to produce data that deceives
the discriminator, while simultaneously training the
discriminator to accurately differentiate between real
and created data.

This research used CTAB‐GAN [12] to augment
the dataset by a factor of two. The CTAB‐GAN is an
expanded version of the initial research on CGAN for
tabular data [13], enabling the handling of imbalanced
data.
3.3. Preprocessing

In the ϐirst stage, feature scaling was utilized as
a data preparation technique for standardizing the
values of features in a dataset to uniform scale. As
mentioned in the literature [14,15], data standardiza‐
tion is advantageous in terms of enhancing efϐiciency
throughout the training phase. This study used the
widely used Z‐Score (1) standardization approach:

𝑍score =
𝑥 − 𝜇
𝜎 (1)

where x is the raw score, 𝜇 is the mean and 𝜎 is the
standard deviation.
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In addition, two more standardization formulas,
MinMax (2) and MaxAbs Scaler (3), were tested on
deep learning networks

𝑍minmax =
𝑥 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛 (2)

𝑍𝑚𝑎𝑥𝑎𝑏𝑠 =
𝑥

|𝑚𝑎𝑥| (3)

where x is the raw score, min is the minimum value
of the feature and max is the maximum value of the
feature.

3.4. Machine Learning Models

The research was initiated by evaluating the per‐
formance of various machine learning classiϐication
methods, including random forest (RF), Gaussian
Naive Bayes, support vector machines (SVMs), logis‐
tic regression, stochastic gradient descent (SGD), K‐
nearest neighbors (KNN) and decision tree (DT). The
tabular data format was used as the input for all the
described algorithms.

All algorithms have been tested with different pre‐
processing methods, both on the initial as well as
expanded dataset.

3.5. Machine Learning Models

The subsequent stage of the investigation entailed
evaluating the following ANN architectures: convolu‐
tional neural network (CNN), recurrent neural net‐
work (RNN) and feedforward neural network (FNN).
Furthermore, two of the most widely used RNN con‐
cepts, namely long short‐term memory (LSTM) and
gated recurrent unit (GRU), were evaluated. Both
LSTM and GRU attempt to overcome the problem of
vanishing gradients by introducing data ϐlow control
mechanisms [16].

Previously, these methods had been employed to
classify relevant medical data [17,18].

3.6. Evaluation Process

Theperformance of all testedmodelswas assessed
with the use of K‐fold cross‐validation. This pro‐
cess entailed partitioning the dataset into K sub‐
sets, referred to as folds, where K‐1 subsets were
allocated for training purposes and one subset was
reserved for validation. Following this, the subsets
have been sequentially rotated in subsequent tests,
which enabled a more precise evaluation of the best,
worst, and average performance of the classiϐication.
In thepresentedwork the valueofKwas establishedat
10 in accordance with the literature standard and the
scale of the dataset. Thus, the proportion of training
to testing datasets is ten percent to ninety percent.
During the evaluation of models, the default 10‐fold
set was decreased to 90%, with the remaining 10%
forming a dedicated test dataset. This has been done
to ensure that the performance ofmodels trainedwith
and without data generated with the use of CGAN can
be effectively compared.

The general workϐlow of the presented study is
shown in Figure 2.

Figure 2. The workflow of the presented research into
application of machine learning methods for the
classification of hearing loss types based on pure‐tone
audiometry data

3.7. Evaluation Parameters

In addition to traditional measures such as accu‐
racy, the presented research also employed precision‐
recall metrics derived from a confusion matrix [19]
as well as receiver operating characteristics (ROC)
curves which encompass the pertinent area‐under‐
the‐curve (AUC) data.

These curves effectively demonstrate the discrim‐
ination performance of the evaluated models by com‐
paring true positives and false positives. Further‐
more, in addition to evaluating the efϐicacy of binary
classiϐication models, the receiver operating charac‐
teristic (ROC) curve and the area under the ROC
curve (ROC AUC) score are valuable instruments for
assessing multiple classiϐication challenges. The cho‐
sen approach is OvR, an acronym for “one versus the
rest,” which assesses multiclass models by comparing
each class to the others simultaneously. In this case,
one class is designated as the “positive” class, while
the remaining classes are designated as the “negative”
class. This transforms the output of multiclass classi‐
ϐication into binary classiϐication, enabling the appli‐
cation of established binary classiϐication metrics to
evaluate this situation [20].
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Table 1. Comparative analysis of performance outcomes of machine learning models without GAN

Algorithm Gaussian
Naive
Bayes

K-Nearest
Neighbors

Logistic
Regression

Support
Vector

Machines

Stochastic
Gradient
Descent

Decision
Trees

Random
Forest

Accuracy 62.34%
(± 12%)

77.02%
(± 9%)

82.18%
(± 9%)

85.15%
(± 6%)

74.74%
(± 9%)

80.09%
(± 4%)

83.03%
(± 4 %)

Precision 97.02%
(± 4%)

97.34%
(± 3 %)

97.92%
(± 3%)

97.84%
(± 3%)

97.91%
(± 3%)

97.65%
(± 3%)

97.62%
(± 3 %)

Recall 62.34%
(± 12 %)

77.02%
(± 9 %)

82.18%
(± 9%)

85.15%
(± 6%)

74.74%
(± 9%)

80.09%
(± 4 %)

83.03%
(± 4 %)

F1 74.68%
(± 7%)

84.75%
(± 8%)

88.36%
(± 8%)

90.31%
(± 5%)

83.76%
(± 7%)

87.36%
(± 4%)

89.12%
(± 4%)

Table 2. Comparative analysis of performance outcomes of machine learning models with GAN

Algorithm Gaussian
Naive
Bayes

K-Nearest
Neighbors

Logistic
Regression

Support
Vector

Machines

Stochastic
Gradient
Descent

Decision
Trees

Random
Forest

Accuracy 61.99%
(± 10 %) ⇓

75.14%
(± 7%) ⇓

86.67%
(± 5 %) ⇑

89.52%
(± 4 %) ⇑

80.68%
(± 13%) ⇑

79.31%
(± 2 %) ⇓

83.50%
(± 4 %) ⇑

Precision 97.00%
(± 4 %) ⇓

97.32%
(± 4 %) ⇓

98.37%
(± 2 %) ⇑

98.18%
(± 2 %) ⇑

97.72%
(± 3 %) ⇓

97.66%
(± 3 %) ⇑

97.66%
(± 3 %) ⇓

Recall 61.99%
(± 10 %) ⇓

75.14%
(± 7 %) ⇓

86.67%
(± 5 %) ⇑

89.52%
(± 4 %) ⇑

80.68%
(± 13 %) ⇑

79.31%
(± 2 %) ⇓

83.50%
(± 4 %) ⇓

F1 74.56%
(± 6 %) ⇓

83.86%
(± 6 %) ⇓

91.75%
(± 4 %) ⇑

93.22%
(± 3 %) ⇑

87.01%
(± 11 %) ⇑

86.91%
(± 3 %) ⇓

89.45%
(± 4 %) ⇑

4. Results and Discussion

The initial step of the presented study involved
evaluation of the classiϐication performance offered
by a collection of machine learning algorithms. The
outcomes have been evaluated in relation to accuracy,
precision, recall, and F1 score. Macro averaging in
10‐fold cross validation was used to offset the class
imbalance in the training dataset. The test results are
presented in Table 1.

The support vector machine classiϐier has
achieved the highest level of success among machine
learning algorithms, with an accuracy rate of 85.15%.
The algorithm achieved the highest ratings in
precision, recall, F1, and AUC. In close pursuit of SVM,
the logistic regression and random forest models both
exceeded 82% in terms of accuracy.

Stochastic gradient descent achieved an accu‐
racy of 74.74%, while K‐nearest neighbors obtained
77.02%, which puts both of them well below the top
three algorithms, but still signiϐicantly higher than
Gaussian Naive Bayes which only reached 62.34%
accuracy.

Tree‐based classiϐiers havedemonstrated superior
accuracy stability in 10‐fold validation. The decision
tree classiϐier exhibits a standard deviation of roughly
4%, while the random forest classiϐier has a stan‐
dard deviation of around 4.65%. In contrast, all other
models have a standard deviation over 6%. The issue
of imbalanced data, which is certainly visible in this
study, is one of the factors that might adversely affect
the effectiveness of machine learning algorithms, as
exempliϐied by the subpar results of Gaussian Naive
Bayes.

The results in Table 2 depict the outcomes
obtained by augmenting the training set using CTAB‐
GAN. The application of CGAN yielded positive out‐
comes for only 4 out of the 7 algorithms that were
examined. Doubling the size of training data did not
inϐluence the accuracy of Naive Bayes and decision
tree, which produced results differing by less than 1
percentage point. The KNN model exhibited a slight
reduction in overall classiϐication performance, losing
less than 2 percentage points in accuracy and recall.
On the other hand, the generation of additional train‐
ing data resulted in increasing the classiϐication accu‐
racy level in SVMs and logistic regression by approxi‐
mately 5%. The largest increase, amounting to an 8%
increase, is shown in the SGD results as compared to
those without CGAN.

This being said, the increase in accuracy, as well
as improvements in other measures such as preci‐
sion, recall, and F1 score shown by all three algo‐
rithms could be considered to be within their respec‐
tive margins of error. In order to sidestep the issue of
increased margins of error in the expanded datasets,
the classiϐication accuracy of selected methods was
tested again on the dedicated test dataset, which had
been extracted from the original data before training.
Results of these tests are presented in the form of
confusion matrices displayed in Figures 3, 4, 5 and
Table 3. The matrix on the left depicts the outcomes
obtained without the use of CGAN, while the matrix
on the right illustrates the results following the imple‐
mentation of CGAN. The S, M, and C indices represent
sensorineural hearing loss, mixed hearing loss, and
conductive hearing loss, respectively.
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Figure 3. Confusion matrices of the logistic regression model trained without CGAN (left) and with CGAN (right)

Figure 4. Confusion matrices of the stochastic gradient descent model trained without CGAN (left) and with CGAN (right)

Figure 5. Confusion matrices of the support vector machines model trained without CGAN (left) and with CGAN (right)

Comparing the ϐindings obtained from 10‐fold
cross validation to those obtained from a dedicated
test, there is a similar improvement (Table 3). Logistic
regression, support vector machines, and stochastic
gradient descent exhibit considerable enhancements
in accuracy, similar to the outcomes shown in 10‐
fold (Table 2). The results for Gaussian Naive Bayes
and random forest show minimal variation, with a
difference of less than one percentage point The most
signiϐicant decline was observed in the performance
of KNN and decision trees, with a difference of 1.24%,
which is still comparable to the results obtained from
the 10‐fold analysis.

The improvements brought by artiϐicially expand‐
ing the training dataset are best visible in the confu‐
sion matrices presented in Figures 3, 4, and 5.

In the case of the logistic regression model results
depicted in Figure 3, it is noteworthy that, subsequent
to the adoption of GAN, the number of conduc‐
tive hearing loss cases (C) incorrectly labeled as
sensorineural and mixed has demonstrated a drop
of 30% and 50%, respectively. The improvements
to classiϐication of the remaining types are much
smaller but persistent, with only the classiϐication
of mixed hearing loss as conductive showing no
improvements. The performance of Stochastic Gradi‐
ent Descent model has shown the largest improve‐
ments after trainingwith GAN‐derived data (Figure 4).
The number of mixed hearing loss cases incorrectly
classiϐied as sensorineural decreased by 73% (from
33 to 9), while the number of conductive hearing loss
cases labeled as sensorineural was reduced by 25%
(12 to 9).
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Table 3. Comparison of the accuracy of the tested
machine learning models trained with and without the
use of CGAN, analyzed on the dedicated test dataset

Algorithms Default
training
(acc)

Training
with CGAN

(acc)
Gaussian Naive Bayes 63.09% 63.59% ⇑
K‐Nearest Neighbors 80. 29% 79. 05% ⇓
Logistic Regression 89.77% 92.51% ⇑
Support Vector
Machines

90.27% 93.04% ⇑

Stochastic Gradient
Descent

79.55% 85.53% ⇑

Decision Trees 84. 53% 83.29% ⇓
Random Forest 87.78% 88.02% ⇑

At the same time, the number of sensorineural
hearing loss cases improperly recognized as conduc‐
tive decreasedby29%(from14 to10) and thenumber
of mixed hearing loss datasets incorrectly labeled as
conductive decreased by 73% (from 11 to 3). How‐
ever, these gains are offset somewhat by a reduction in
the accuracy of mixed hearing loss classiϐication. After
training on data generated by GAN, SGD has shown
an increased tendency to label mixed hearing loss
as either sensorineural (22 cases versus 11, a 100%
increase) or conductive (5 cases versus 1, a 400%
increase). This being said, the total number of prop‐
erly recognized datasets still shows a considerable 8%
increase (343 from 319).

Out of the three analyzed machine learning mod‐
els, support vector machines (SVMs) is the only one
which shows consistent improvements to all cases
of classiϐication inaccuracy after training with GAN‐
derived data. The number of sensorineural hearing
loss cases improperly labeled as mixed and conduc‐
tive is reduced by 38% (16 to 10) and 50% (2 to 1),
respectively. The number of mixed hearing loss cases
improperly labeled as sensorineural and conductive is
reducedby14%(7 to 6) and50%(2 to 1), respectively.
Finally, the number of conductive hearing loss cases
incorrectly recognized as sensorineural and mixed is
reducedby50%(4 to 2) and13%(8 to 7), respectively.
These improvements increase the total number of cor‐
rectly classiϐied datasets from 362 to 375.

Given that in the current state of the art, deep
learning models surpass the classiϐication accuracy
of all machine learning methods, the presented study
also evaluated the performance of several deep learn‐
ing architectures. These include feedforward neu‐
ral networks (FNN), convolutional neural networks
(CNN), and recurrent neural networks (RNN), which
encompass gated recurrent units (GRU) and long
short‐term memory (LSTM). The evaluation was per‐
formed using a 10‐fold cross‐validation method‐
ology, and involved assessment of the impact of
implementing different data standardization meth‐
ods. The results of these experiments are displayed in
Tables 4–6.

Table 4. Classification performance of deep learning
models using Z‐Score normalization

FNN CNN RNN LSTM GRU
Accuracy 93.06%

(± 1%)
93.76%
(± 1%)

94.07%
(± 1%)

95.63%
(± 1%)

93.83%
(± 1%)

Precision 93.10%
(± 1%)

93.82%
(± 1%)

94.17%
(± 1%)

95.68%
(± 1%)

93.94%
(± 1%)

Recall 93.06%
(± 1%)

93.82%
(± 1%)

94.07%
(± 1%)

95.63%
(± 1%)

93.83%
(± 1%)

F1 93.0%
(± 1%)

93.75%
(± 1%)

94.04%
(± 1%)

95.63%
(± 1%)

93.83%
(± 1%)

Table 5. Classification performance of deep learning
models using MinMaxScaler normalization

FNN CNN RNN LSTM GRU
Accuracy 66.44%

(± 3%)
68.06%
(± 2%)

68.23%
(± 2%)

67.46%
(± 1%)

68.95%
(± 1%)

Precision 66.43%
(± 3%)

57.30%
(± 3%)

57.93%
(± 3%)

57.69%
(± 2%)

58.11%
(± 2%)

Recall 66.43%
(± 3%)

68.06%
(± 2%)

68.23%
(± 2%)

67.46%
(± 1%)

68.95%
(± 1%)

F1 60.09%
(± 3%)

61.83%
(± 2%)

68.23%
(± 2%)

61.18%
(± 2%)

62.64%
(± 2%)

Table 6. Classification performance of deep learning
models using MaxAbsScaler normalization

FNN CNN RNN LSTM GRU
Accuracy 39.78%

(± 1%)
39.78%
(± 1%)

39.78%
(± 1%)

39.78%
(± 1%)

39.78%
(± 1%)

Precision 15.84%
(± 1%)

15.85%
(± 1%)

15.85%
(± 1%)

15.85%
(± 1%)

15.85%
(± 1%)

Recall 39.78%
(± 1%)

39.78%
(± 1%)

15.88%
(± 1%)

39.78%
(± 1%)

39.78%
(± 1%)

F1 22.66%
(± 1%)

22.66%
(± 1%)

22.66%
(± 1%)

22.66%
(± 1%)

22.66%
(± 1%)

As it can be seen in Tables 4–6, normaliza‐
tion strategy plays a fundamental part in obtaining
good classiϐication performance using deep learn‐
ing models. Undoubtedly, the Z‐Score normalization
method delivered outstanding performance across all
architectures (Table 4). These classiϐication accuracy
results are on average 35% better than in the case of
MinMaxScaler (Table 5) and about 120% better than
those produced by MaxAbsScaler (Table 6), which is
clearly not suitable for audiometry data.

Concerning the results obtained by all networks
with the Z‐Score normalization method, LSTM exhib‐
ited the highest performance in terms of accuracy,
recall, precision and F1 score. Speciϐically, it achieved
an accuracy of 95.63% and an F1 score of 95.63%. It
was predictable that the input datasets, being sequen‐
tial data, would be well‐suited for the RNN family
of models, which is known for its strength in han‐
dling this type of data [18]. The results appear to
validate the conclusions of a previous study [21]
which assessed several neural network conϐigura‐
tions to create a binary classiϐier for distinguishing
between pathological hearing loss and normal hear‐
ing using similar data. Said investigation also con‐
cluded that the LSTM architecture yielded the most
favorable results. The second‐best results have been
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Figure 6. ROC curves with the AUC parameters for
tested deep learning models during 10‐Fold validation

achieved by the simple RNN model, with a difference
of approximately 0.6%. While the difference is within
the margin of error, this result is somewhat expected,
considering that LSTMmodels typically offer superior
performance over simple RNNmodels. The third place
of the CNN model, which is prominently used for pro‐
cessing raster data, could be explained by the fact that
each dataset in the current study is represented by a
two‐dimensional table which somewhat resembles a
very small raster.

The classiϐication performance of the presented
deep learning models (Table 4) is visualized in Fig‐
ure 6 in the form of ROC curves with correspond‐
ing AUC parameters. These illustrate the discrimina‐
tory capability of the evaluated deep learning models
quantiϐied by the ratio of true positives to false posi‐
tives.

All CNN, RNN, LSTM, and GRU models have the
same AUC parameter score of 0.94. With an AUC value
of 0.91, the FNNmodel is conspicuously inferior to the
others.

In general, the scaling technique has a substantial
impact on the performance of classiϐication models.
Furthermore, this impact may vary depending on the
speciϐic types of models employed, such as monolithic
and ensemble models [22].

Based on these results, all subsequent tests were
performed with the use of Z‐Score normalization, as it
is the solemethod that yields outcomes comparable to
the state‐of‐the‐art.

The ϐinal step of the presented research analyzed
the performance of deep learning methods trained
on the dataset augmented with the use of CGAN. The
results are displayed in Table 7.

Table 7. Performance of deep learning models trained
on data augmented with CGAN

FNN CNN RNN LSTM GRU
Accuracy 90.64%

(±1%)
⇓

90.71%
(±1%)

⇓

94.92%
(±0.5%)⇑

98.57%
(±0.5%)

⇑

95.41%
(±0.5%)

⇑
Precision 90.88%

(±1%)
⇓

90.95%
(±1%)

⇓

94.92%
(±0.5%)

⇑

98.58%
(±0.5%)

⇑

95.44%
(±0.5%)

⇑
Recall 90.64%

(±1%)
⇓

90.71%
(±1%)

⇓

94.92%
(±0.5%)

⇑

98.57%
(±0.5%)

⇑

95.41%
(±0.5%)

⇑
F1 90.60%

(±1%)
⇓

90.74%
(±1%)

⇓

94.92%
(±0.5%)

⇑

98.57%
(±0.3%)

⇑

95.41%
(±0.5%)

⇑

Table 8. Comparison of the performance of deep
learning models trained with and without the use of
CGAN, analyzed on the dedicated test dataset

Models Default training
(acc)

Training with
CGAN (acc)

FNN 95.48% 91.66% ⇓
CNN 92.01% 88.19% ⇓
RNN 93.40% 94.44% ⇑
LSTM 94.79% 97.56% ⇑
GRU 92.70% 92.70%⇔
FNN 95.48% 91.66% ⇓

As it can be seen in Table 7, training on the
expanded dataset has signiϐicantly increased the per‐
formance of certain deep learning models while
impacting the performance of others, which mirrors
the situation with machine learning algorithms. In
particular, the classiϐication accuracy of recurrent net‐
works has increased by nearly 1% in the case of RNN,
around 1.5% for GRU and nearly 3% for LSTM. On the
other hand, the classiϐication effectiveness of FNN and
CNN has reduced by nearly 3%. This being said, con‐
sidering the potential impact of testing the networks
onCGAN‐augmenteddata (whichhas been shownpre‐
viously for machine learning methods), a subsequent
analysis was conducted using the dedicated test set.
The results of this test are presented in Table 8.

Similarly to the case of machine learning models,
testing on the dedicated dataset yields similar over‐
all results, however with somewhat different perfor‐
mance values. The performances of LSTM and RNN
models have shown an increase, whereas those of
FNN and CNN experienced a decline. An exception
to this correlation is the GRU model, as its ϐindings
remain consistent regardless of the approach used.
The LSTMmodel achieved the highest accuracy, reach‐
ing 97.56%. This result is lower by one percentage
point compared to the ϐigure reported in Table 7 for
the 10‐fold with GAN approach.
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In general, artiϐicial neural networks exhibit supe‐
rior performance to deep learning models when com‐
paring the two. However, the utilization of CGAN for
training machine learning methods enables some of
them to come closer to the accuracy delivered by
the less performant deep learning methods. Still, the
optimal outcomes are achieved by RNN‐based models
with Z‐Score normalization and GAN augmentation, in
particular simple RNN and LSTMmodels.

The achieved results signiϐicantly exceed those
of prior investigations (conducted by Elbaşı and
Obali [7]), which utilized a Decision Tree to classify
rawaudiometry datawith an accuracy of 95.5%. Inter‐
estingly, when evaluated on the presented data, the
same Decision Tree algorithm achieved an accuracy of
approximately 83% on the dedicated test dataset. Yet,
the validity of the cited ϐindings may be questioned
due to the limited sample size of just 200, which is
signiϐicantly smaller than the dataset employed in the
present study. Moreover, the results cannot be directly
compared because the cited study was conducted on
four classes (as opposes to three classes in the pre‐
sentedwork), which included individualswith normal
hearing, and there is no data regarding class distribu‐
tion nor the method used for cross‐validation.

At the same time, the greatest classiϐication accu‐
racy of 97.56% attained by LSTM on the dedicated
test dataset is comparable to the present state of the
art in classifying pure tone audiometry test results
(97.5%) reported by Crowson et al. [8] for raster
datasets. Similar to that work, training data augmen‐
tation has provided signiϐicantly better classiϐication
results (although the presented work augmented tab‐
ular data, whereas Crowson et al. augmented raster
data). Again, these results cannot be directly com‐
pared due to the lower number of classes (three
instead of four) used in the presented study.Moreover,
Crowson et al. [8] classiϐied raster audiograms instead
of actual test results, and images producedbydifferent
types of audiometry software vary signiϐicantly. These
variations can range from minor differences in the
color of the plot and the size of the measurement
point indicators to more signiϐicant changes that may
adversely affect the performance of automated classi‐
ϐiers (e.g., presenting outcomes from both ears on a
solitary plot). In order for image‐trained classiϐication
models to be effective with all types of audiometry
data, it is necessary to create a comprehensive audio‐
gramdatabase. Thiswould include collecting and clas‐
sifying thousands of audiograms created by different
audiometry applications. By contrast, a classiϐier that
utilizes unprocessed audiometry data offers greater
versatility and broader potential for use in the clinical
setting.

On the whole, despite attaining a relatively high
classiϐication accuracy of 97.56%, the presented
LSTM‐based classiϐiermay not be adequate for clinical
use due being trained on data augmented with CGAN.
While this data has signiϐicantly improved the perfor‐
mance of certain classiϐiers, it has also decreased the
performance of other methods, suggesting that not all
of the generated datasets may properly reϐlect real‐
world audiometry data. Therefore, the creation of a
reliable and precise classiϐier for raw audiometry data
necessitates the establishment of a training dataset
that is sufϐiciently large and representative, while also
being closely controlled by medical experts.

5. Conclusion
The objective of the presented study was to assess

the efϐicacy of different artiϐicial intelligence algo‐
rithms in classifying discrete tonal audiometry data
series into three speciϐic types of hearing loss: con‐
ductive, sensorineural, and mixed. For this purpose,
the study involved testing machine and deep learn‐
ing models comprised of Gaussian Naive Bayes, sup‐
port vectormachines, random forest, K‐nearest neigh‐
bors, logistic regression, stochastic gradient descent,
decision trees, feedforward neural network, convolu‐
tional neural network and recurrent neural network
(including long short‐term memory and gated recur‐
rent unit). The models indicated above have been
trained and assessed using 4007 sets of tonal audiom‐
etry data, which had been analyzed and labeled by
audiologists who are experts in the ϐield.

Furthermore, the investigation also explored the
impact of training dataset augmentation using a con‐
ditional generative adversarial network and examined
how different standardization procedures affect the
effectiveness of deep learning architectures.

The best overall results were obtained with the
long short‐term memory model, which attained the
maximum classiϐication accuracy of 97.56% with Z‐
Score normalization and CGAN data augmentation. On
the whole, all deep learningmodels achieved substan‐
tially better classiϐication results than machine learn‐
ing algorithms when trained on the standard dataset,
but training on the GAN‐augmented dataset allowed
support vector machines to achieve results similar to
that of less performant deep learning models.

Thus, on the one hand the study’s ϐindings con‐
ϐirmed the overall ranking of classiϐication perfor‐
mance that earlier research had established. On the
other hand, the ϐindings also suggest that the classiϐi‐
cation accuracy levels previously documented in liter‐
ature, whichwere attained using considerably smaller
datasets, might have been overly sanguine.
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Finally, the results of the presented research indi‐
cate that using a GAN augmentation of training data
may produce very positive results, however (as exem‐
pliϐied by the performance of the stochastic gradient
descentmodel) unsupervised generation of input data
may not always lead to optimal outcomes. In this con‐
text, future work could concentrate on enhancing the
accuracy of the RNN‐based classiϐier and increasing
the size of training dataset as well as designing a GAN
model which is more efϐiciently tuned for producing
properly labeled tonal audiometry test data.

In general, the demonstrated outcomes indicate
that the proposed AI‐driven pure tone audiometry
data classiϐier may have practical implications in clin‐
ical settings, functioning as either a classiϐication sys‐
tem for general practitioners or a support system for
professional audiologists. In both scenarios, the imple‐
mentation of the classiϐier has the potential to mini‐
mize human error, enhance diagnostic accuracy, and
reduce the waiting time for patients to receive their
diagnosis.
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