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Abstract:

We propose a practical simple local navigation system
inspired by the sequence learning mechanism of the ento-
rhino-hippocampal system. The proposed system memori-
zes a route as sequences of landmarks in the same way
humans do. The proposed local navigation system includes
a local route memory unit, landmark extraction unit, and
learning-type matching unit. In the local route memory
unit, the concept of the sequence learning mechanism of
the entorhino-hippocampal system is implemented using
a fully connected network, while a sequence of landmarks
is embedded in the connection matrix as the local route me-
mory. This system has two operation modes: learning and
recall modes. In learning mode, a sequence of landmarks,
i.e. a local route, is represented by enhanced loop connec-
tions in the connection matrix. In recall mode, the system
traces the stored route comparing current landmarks with
the stored landmarks using the landmark extraction and
learning-type matching units. The system uses a prospec-
tive sequence to match the current landmark sequence with
the recalled one. Using a prospective sequence in the route
comparison allows confirmation of the correct route and
deals with any slight change in the current sequence of
landmarks. A certainty index is also introduced for judging
the validity of the route selection. We describe a basic up-
date mechanism for the stored landmark sequence in the
case of a small change in the local route memory. The vali-
dity of the proposed system is confirmed using an autono-
mous mobile robot with the proposed navigation system.

Keywords: human-like local navigation, sequence lear-
ning, entorhino-hippocampal system, autonomous mobile
robot.

1. Introduction

Recently, due to the rapid growth in digital techno-
logy, there has been accelerated development of highly
intelligent machines. Intelligent machines have made
our daily lives far more convenient. Huge quantities of
data are easily handled electronically at high speed and
many electrical devices have been provided with powerful
functionality. In particular, the latest vehicles come
equipped with very sophisticated information devices
[1]. One of the most remarkable technologies is the
navigation system, which guides us to our destinations in
unfamiliar territory. The guidance is supported by a GPS
system and an accurate digital map. In other words, the
system is highly dependent on data and therefore, has
a weakness with respect to recent changes and mistakes
in the data. Humans on the other hand, can handle such

changes flexibly. Introducing such human-like informa-
tion processing would be vital in compensating for the
weakness in digital equipment. Our aim is to develop an
effective human-like system, which compensates for this
weakness and is able to suggest a plausible route even
when conventional navigation systems fail due to insuf-
ficientinformation.

Recently, many researchers have focused on the func-
tion of spatio-temporal representation in the hippocam-
pus [2], [3]. Yoshida and Hayashi proposed a computa-
tional model of the sequence learning in the hippocam-
pus; that is, neurons that learn a sequence of signals can
be characterized, in the hippocampal CA1, by using pro-
pagation of neuronal activity in the hippocampal CA3
[5]- A network model of the entorhinal cortex layer II
(ECII) with entorhino-hippocampal loop circuitry was
proposed by Igarashi et al. [6]. Loop connections bet-
ween stellate cells in the ECII are selectively potentiated
by afferent signals to the ECII, and consequently stellate
cells connected by potentiated loop connections fire
successively in each theta cycle. The mechanism has also
been investigated from a neurobiology viewpoint [7]. We
focus on the attractive abilities of sequential learning
and apply them to a local navigation system.

Several navigation mechanisms, inspired by crucial
brain functions especially in the hippocampus and its
surroundings, have been proposed [4], [8], [9]. Most of
these mechanisms, however, tend to become very
intricate as a result of faithfully mimicking the brain
mechanism. On the other hand, simplicity of the model is
an important factor for practical embedded systems. We
aim to develop a simple local navigation system introdu-
cing the essence of the remarkable brain functions. We
have proposed a practical simple local navigation system
inspired by the sequence learning mechanism of the ECII
with entorhino-hippocampal loop circuitry [10]. In the
system, a route is represented as a sequence of landmarks
as is the case in humans. The proposed local navigation
system consists of a simple local route memory unit,
a landmark extraction unit, and a learning-type matching
unit. In the local route memory unit, the sequence lear-
ning mechanism of the entorhino-hippocampal system is
implemented using a fully connected network, while
a sequence of landmarks is embedded in the connection
matrix as the local route memory. This system has two
operation modes: learning and recall modes. In the lear-
ning mode, a sequence of landmarks is represented by
enhanced loop connections in the connection matrix. In
the system, a certainty index is introduced to evaluate
the validity of the route selection. We have realized
a flexible local navigation system in a simple architecture
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using the prospective landmark sequence and certainty
index. In this paper, we describe the mechanisms for
storing and recall the landmark sequence and present
a basic update mechanism for the stored landmark se-
quence. We confirm the validity of the proposed system
and investigate its adaptability to changes in circum-
stance through experiments using an autonomous mobile
robot with the proposed mechanism.

2. Sequence learning mechanism

of the entorhinal-hippocampal system

Igarashi et al. proposed a computational model of the
ECII network with entorhino-hippocampal loop connec-
tions [6]. In their model, a pair of afferent pulse trains to
the ECII, with clearly different frequencies, is selected by
virtue of loop connections that are selectively poten-
tiated by the pairs of afferent signals. The frequency de-
pends on the strength of sensory input. The signal trans-
mission delay through the loop connections produces the
order of places. Here a “place” means a place in the real
world corresponding to a landmark. We assume that the
observer moves at a constant speed.

Here, let us assume that a route is coordinated by
a sequence of places, A, B, C, D, and E. The signal for each
place is represented by a frequency depending on the
distance between the observer and the place, where
a high frequency corresponds to a shorter distance.
A higher frequency signal makes a so-called “place cell”
firein a shorter period of time. When a signal observed at
place Ais fed into the ECII, the signal of the place cell Ais
transmitted from the ECII to the ECV through the DG-CA3-
CA1in the entorhino-hippocampal loop circuit as shown
in Fig. 1. If signal B observed at place B fires another
place cell B in the ECII at the time the transmitted signal
A arrives at the ECV cell A, the connection between the
ECV cell A and ECII cell B is enhanced by learning mecha-
nisms in the brain. This means that a relationship bet-
ween place A and place B is established. The relation-
ships for the following signals are established in the
same manner. As a result, the order of places is embedded
in the loop connection weights from the ECV to ECII
neurons.

—— Hippocampus - Entorhinal Cortex—
ECV

FETTTTIR28 9
_____ A """

DG 0]

Signal "-_
corresponding to .,

Place A Place B Pléce C

Fig. 1. Entorhino-hippocampal loop circuit. Here “place”
means a place in the real world, and C) represents “a place
cell” which is a neuron in EC corresponding to a place in the
real world.

In this paper, we develop a practical simple local na-
vigation system inspired by the sequence learning me-
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chanism in the hippocampus and the entorhinal cortex.
The system uses signals obtained from images of land-
marks specifying places and the route is stored as a chain
connection of landmarks.

3. Simple local navigation system inspired
by the sequence learning mechanism in
the entorhino-hippocampal loop circuit
We propose a dedicated navigation system inspired by

the structure of the entorhino-hippocampal loop circui-
try. In the proposed system, the sequence learning me-
chanism is implemented using a fully connected network
(as shown in Fig. 2), while the order of landmarks is em-
bedded in the matrix of loop connections as a local route
memory unit. Here each landmark corresponds to a place
in the real world. The entorhino-hippocampal loop circui-
try illustrated in Fig. 1 is represented by neurons corres-
ponding to place cells in the ECII and connecting loops
with connection weights. A connection weight repre-
sents an established connection between the correspon-
ding place cells in the ECV and ECII. The navigation sys-
tem also includes a landmark extraction unit and a lear-
ning-type matching unit as shown in Fig. 3. The landmark
extraction unit extracts landmarks from an image obtain-
ed with a camera, and the learning-type matching unit
evaluates the degree of matching with the current tracing
route.

Connection
weight

By

e

Connection matrix Neuran (place cell in ECH)

Fig. 2. Local route memory unit: the route is coordinated by
a sequence of observed landmarks. Landmark sequence:
A—B—(—D—E—F—. Each landmark corresponds to
a place in the real world. The loop circuit illustrated in Fig. 1
is represented by neurons corresponding to place cells in
ECII and a loop connected with a connection weight. The
connection weight represents an established connection
between place cells in ECV and ECII.
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Fig. 3. Proposed navigation system includes a landmark
extraction unit, a learning-type matching unit, and a local
route memory unit.
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The system has two operation modes, learning mode
and recall mode. In learning mode, the order of the
obtained landmarks is stored in the local route memory
unit. In recall mode, the local route memory unit recalls
the prospective landmark sequence and the learning-type
matching unit evaluates the selected current route by
comparing the observed landmark sequence with the re-
called prospective landmark sequence. Here, we assume
the following procedure. 1) First, in learning mode, the
system memorizes a route by moving along the route or
storing the data of the route. 2) Thereafter, in recall mo-
de, the system traces the route automatically according to
the stored one.

Fig. 4 shows the basic elements of the local route me-
mory unit. Fig. 4a) depicts a neuron unit corresponding to
a place cell in the ECIL. Here I, a;, u; and prg; are the
landmark input, activation input, output of the neuron,
and a program signal, respectively. A LRN / RCL s
a mode select signal equal to “1” in learning mode and “0”
in recall mode. Once the neuron has been activated,
output u; retains the activated state until another neuron
is activated. Fig. 4b) depicts the connection weight unit,
where w;; is a connection weight. The connection weight
unit stores the ordering relationship between the i-th and
J-th neurons. When [ is fed into the j-th neuron, u; is
activated in learning mode, prg; becomes “1” and the
connection weight w;is set to “1”.

(a) j-th neuron unit
/ LRN /RCL

_f\ /
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Fig. 4. (a) Neuron unit and (b) connection weight unit. The
neuron corresponds to aplace cellin ECII. Here 1, a;, u; and
prg; are the landmark input, activation input, output of the
neuron, and a program signal, respectively. A LRN /| RCL
is @ mode select signal equal to “1” in learning mode and
“0" in recall mode. Once the neuron has been activated, u;
retains an activated state until another neuron is activated.
The connection weight unit memorizes the ordering rela-
tionship between the i-th and j-th neurons. When I; is fed
into the j-th neuron, u; is activated in learning mode, prg;
changes to “1” and the connection weight w;is set to “1”.

Prg;

In the neurobiological computational model, the loop
delay corresponds to the sampling period of capturing the
landmark. Conversely, in the proposed system, the land-
mark is captured every time it is observed and the acti-
vation state of the neuron is kept with a latching mecha-
nism until the next landmark appears.

3.1. Learning mode
In learning mode (Fig. 5), the system coordinates the
route as a sequence of observed landmarks. A signal
corresponding to the landmark is fed into the local route
memory unit and a connection is made between the cur-
rent landmark and the one immediately before. Here, let
us assume that a signal of the j-th landmark [; is observed
after a signal of the i-th landmark .. The relationship bet-
ween the landmarks is represented by enhanced loop con-
nections in the connection matrix as follows:
1) u,is activated by signal 7, and the activation state
is retained until the next neuron is activated.
2) Then, the landmark signal /; is fed into the j-th
neuron, and a program signal prg; is set to “1”.
3) The connection weight w;is assigned by the follo-
wing equation.
{1 if u;=1 and prg; =1

Wi =

(1)

0 others

4) Moreover, an activation signal a; is assigned by the
following equation.

L if u;=1 and w;=1
a; = (2)
0 others
5) a;activates u;in preparation of the next landmark
signal.

By repeating the above steps, the local route is stored
in the local route memory unit.

Activated line

i, LRN /RCL

Fig. 5. Assignment of the connection weight in learning
mode.

3.2. Recallmode

In recall mode (Fig. 6), LRN / RCL = “0”, the
system traces the stored route in the local route memory
unit as follows:

1) When the landmark signal /; is observed and fed
into the i-th neuron, I, activates u,.

2) If the connection weight w; on the activated line
u;is“1”, thena,is set to “1”.

3) The neuron output signalu;is activated by a;.

4) One recall leads to another, until the (i+k)-th
landmark signal 7., is recalled in the same man-
ner. Here, the observed and prospective sequences
consist of K landmarks.
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5) The recalled sequence consists of K landmarks is
fed into the matching unit and compared with the
current sequence of observed landmarks.

Activated line
1 ; LRN/RCL
/.
? . ! /
W i a; '/ U
\ i-th neuron
Prg;

n
. LRN/RCL

Fig. 6. Landmark sequence activation in recall mode.

3.3. Certainty index CI for judging the validity
of the selected current route

In recall mode, the matching unit matches the current
sequence of landmarks and the corresponding recalled se-
quence (where both sequences consist of K landmarks).
The certainty index CI is introduced to verify the correct-
ness of the current selected route.

The certainty index CI represents the validity of the
route currently selected and is defined as

R _ 40
fOl" Ii+k_]i+k

others

, (4)

1
M, = 0

where K is the length of the recalled sequence used for
route matching, and IR, and I, represent the (i+k)-th
recalled landmark and currently observed landmark,
respectively.

A slight change in the circumstances can be represen-
ted by a change in the CI. For example, a crossing can be
detected by a change in the certainty index CI.. As the
observer reaches the crossing, the certainty index CI,
decreases to 1/K. It is because that the number of the
matched landmarks decreases as closing to a crossing.

3.4. Update mechanism of the stored route in the
local route memory

In the proposed method, the order of landmarks is em-
bedded in a matrix of loop connections as the local route
memory. The stored route in the local route memory unit
can easily be updated by rearranging the loop connec-
tions. In this section, we describe the procedure for up-
dating the connections in two different cases: a missing
or added landmark observed in the selected route. When
the mismatched landmark is detected, the system inves-
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tigates the subsequent sequence after a change point. If
the subsequent landmarks match the stored landmarks,
the system accepts that the selected route is correct and
that an environmental change has occurred in the stored
landmark sequence. If an update of memory is required,
the connections are updated as described below.

(a) Stored route

m| of 4] @] =
PR e P

Stored landmark sequence A== “B'= C"'="0'+"E"

(b) Adaptability to a missing landmark in the real world:
the case in which landmark “B” disappears in the real world.

| New route [
bl

| Expectad the next
route recalled by the
| local route memony

A—/.R\—\'.C

(c) Adaptability to an additional landmark in the real
world: the case in which landmark “b” appears between
landmarks “A” and “B”.
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New connection | @ | New route
~ E |
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Fig. 7. Proposed system can adapt to stored route changes
caused by a slight change in landmarks. The stored route in
the local route memory can be updated by rearranging the
loop connections.
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e

Let us assume that the route depicted in Fig. 7a) is
stored in learning mode. Fig. 7b) illustrates the case whe-
re landmark “B” disappears in the real world. In this case,
first, the landmark of place A is observed. The system re-
calls the prospective landmark sequence and expects the
landmark of place B as shown on the left in Fig. 7b). If “C”
is observed instead of “B”, the system confirms that land-
mark “B” is missing and generates a new connection-node
between “A” and “C” as shown on the right in Fig. 7b). As
a result, the stored route is updated. On the other hand,
Fig. 7c) illustrates the case where landmark “b” appears
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between landmarks “A” and “B”. In this case, a new route
is created by generating two new connections instead of
the old one as shown in Fig. 7c).

4. Experimental results

To confirm the validity of the proposed local naviga-
tion system for practical engineering applications, we
made use of an autonomous mobile robot “WITH” [11],
which is a basic omni-directional mobile robot platform
developed as a result of the Kyutech 21 COE program. We
confirm that the proposed system can extract landmarks
and store a route in the form of a sequence of landmarks
and that the robot with the proposed mechanism can
trace the route corresponding to the stored landmark se-
quence in the local route memory unit. Moreover, we show
that the robot behaves like a human when circumstances
change slightly.

Fig. 8 shows the autonomous mobile robot consisting
of the robot base WITH, a USB camera, and palmtop com-
puter VAIO type-U in which the proposed navigation
system is embedded. The setting signal of the operation
modes and the cruise control signal in learning mode are
given wirelessly by an external computer.

The experiments were designed to investigate the
following behavior: 1) route tracing according to the sto-
red route memorized in learning mode; and 2) selecting
a plausible route when a slightly altered sequence of land-
marks is encountered as a result of either a missing land-
mark or the addition of an unknown landmark in the sto-
red route sequence.

Fig. 8. Autonomous mobile robot consisting of the mobile
robot base WITH, a USB camera, and a palmtop computer
VAIO type-U in which the proposed navigation system is
embedded.

4.1. Route tracing according to the route stored
in the local route memory unit

Landmarks are set along the path on an experimental
field as shown in Fig. 9. A path, of width 24 c¢m, is drawn
using two black lines. Each landmark is about 10 cm x 10
cm and labeled with one of the colors, red (R), blue (B),
light-green (G), yellow (Y), or orange (0). Fig. 10 shows
the arrangement of the landmarks and the route stored in
learning mode in this experiment. In general, a change in

lighting has an effect on the appearance of landmarks
obtained with a camera. Different color images can there-
fore be obtained for the same landmark. Here, we avoid
the problem by using a standard three-layer-perceptron
trained in advance with all the landmarks used in the ex-
periments. In this experiment, the MLP is trained using
the hue data of an HSV image set for each landmark. The
trained MLP works as a classifier of the landmark obtained
with a camera.

The autonomous mobile robot |
WITH employing the proposed |
local navigation system

=

Landmark |

X 2tem]

Fig. 9. Experimental field: field size is 5.5m x 5.5m, path is
drawn using two black lines, and width of the path is 24cm.
Each landmark is about 10cm x 10cm and labeled with
a color: red, blue, light green, yellow, or orange.
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Fig. 10. Arrangement of landmarks and the stored route in
the experiments.

First, in learning mode, an operator controls the robot
navigating through the planned route. The system ob-
tains landmarks beside the path along the route traversed
and stores the route as a sequence of these landmarks.
Once this has been completed, we make the robot trace
the stored route autonomously.

Fig. 11a) shows the camera view in which landmarks
obtained by the landmark-extracting unit are displayed.
The robot traces the correct route as shown in Fig. 11b).
Fig 11c) shows the prospective sequence recalled by the
local route memory unit and a change in the certainty
index as defined in Eq. (3). As shown in Fig.11c), by
monitoring the change in the CI, it is known when the
robot reaches a crossing. The CI returns to "1" after the
robot turns at the crossing. This means that the correct
route has been selected.

4.2. Route tracing with a slight route change

Two situations are assumed: a missing landmark and
the addition of an unknown one in the current route. The
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(a) Camera view: landmarks are extracted from (b) Autonomous mobile robot traces
an image obtained with a single camera the stored route automatically

(c) Prospective sequence recalled by the local route memory unit and a change in the certainty index

| stored fandmark sequence RBBG Y RRGB R BOOB |

[ start |
R R
E 1 e L . al® R B
075 \ "Ir \ '] G ¥
£ \ ;’ \ ."r R B R G G B
2 08 \I' ‘\! D — o
Ec}s 8 0 R B R G
o ¥ B
t 204958788 10N G
B (o]
Certainty Index R B
1 RBBG
1 BBG Y The robot recognizes
Crossing| 075 BGYG
s DR GYG B
“0.25) Y G BR at Crossing
T R RGB x Check |eft
1 RGB
S GB RG Matched
0.5 B RGG
0.25 RGGB «—— at Crossing

1 BOD B

Check right

Fig. 11. Result of route tracing according to the route memorized in learning mode.

(a) Missing landmark in the current route

Evaluates the night path

(b) Change in the certainty index CI

[ Stored landmark sequence RBBG Y RRGB R BOOB

: start .

G B
R G
Certainty index
1 RB
1.3 B
Crossing | 0.75
~=, 05
0.25} 3
] R e G Check left
o 1 Check right
1 ——*RGB
75 ! .
g 5 Landmark missing is verified & g

, G
0.25 | and a new route is generated GB «— at Crossing
o]

O B +— Check right

Fig. 12. Behavior of route tracing in the case of a slight change in the route stored in the local route memory. (a) At a crossing,
the system evaluates all possible routes and chooses the route with the highest matching degree as the correct direction. (b) The
robot recognizes a missing landmark from a change in the CI and by comparing the current route with a shifted memory route.
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(b) Change in the certainty index CI
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Fig. 13. Behavior of route tracing in the case of a slight change in the route stored in the local route memory. (a) At a crossing, the
system evaluates all possible routes and chooses the route with the highest matching degree as the correct direction. (b) The robot
recognizes an additional landmark from a change in the CI and by comparing the current route with a shifted memory route.

behavior in the case of a missing landmark or an additio-
nal one is shown in Figs. 12 and 13, respectively. Fig. 12.
shows the case that landmark is missing. The robot reco-
gnizes a missing landmark from a change in the CI and by
comparing the current route with a shifted memory route.
Then the system generates a new route by update mecha-
nism described in 3.4. Conversely, in the case that an ad-
ditional landmark is appeared in the real world (Fig. 13),
the robot recognizes the additional landmark from a chan-
ge in the CI and by comparing the current route with
a shifted memory route. Consequently, the system gene-
rates new routes by update mechanism described in 3.4.
At a crossing, the robot decides which way to move by
comparing the matching degree (CI) of the local land-
mark sequence for all possible paths. Despite checking all
possible paths at the crossing, perfectly matching paths
are not detected in these cases. Therefore, the robot se-
lects the path with the highest matching degree (CI) as
the plausible direction. When a local route stored in me-
mory is found in the selected route, the system concludes
that its decision was correct and that the route had chan-
ged slightly.

5. Conclusions

A practical simple human-like navigation system in-
spired by the entorhino-hippocampal loop mechanism
was proposed and the validity confirmed through experi-
ments using an autonomous mobile robot. The system na-
vigates using landmarks stored in the memory unit. By
using a prospective landmark sequence, the system is able

to adapt to slight changes in the local route stored in the
route memory unit. In this paper, we confirmed that the
correct action is taken when there is either a missing or an
additional landmark in a local route. This ability makes
the navigation system flexible. In addition, we introdu-
ced the certainty index as a measure of recognizing the
present situation in a route tracing. We also presented the
basic idea for updating the route stored in the local route
memory unit in the case of a slight change in circum-
stances by changing the connection weight of “the fully-
connected network”. The authors emphasize that the
proposed system implementing the sequence learning
mechanism can be completed even by a small palmtop
computer. This feature is very important from an engine-
ering viewpoint.

The system compensates for the latest digital naviga-
tion systems requiring a GPS and up-to-date map for accu-
rate navigation. In particular, the system is promising as
a low-cost and effective navigation system. It can be used
in places where GPS signals are unavailable and in shop-
ping malls where costly dedicated equipment such as
RFID-tag is not employed.

In our future work, we aim to develop a decision me-
chanism for updating the timing and to investigate the
adaptability of the proposed method. Improvement of the
representation ability of the certainty index is necessary
for recognizing more complex situations. A robust land-
mark extraction technique that can operate in real scenes
is also important to use the proposed method in practical
applications.
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