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Abstract:
In this article, the control problem for omnidirectional 3‐
wheel autonomous mobile robots is solved with the use
of (i) a nonlinear optimal control method (ii) a flatness‐
based control approach which is implemented in succes‐
sive loops. To apply method (i) that is nonlinear opti‐
mal control, the dynamic model of the omnidirectional
3‐wheel autonomous mobile robots undergoes approx‐
imate linearization at each sampling instant with the
use of first‐order Taylor series expansion and through
the computation of the associated Jacobian matrix. The
linearization point is defined by the present value of the
system’s state vector and by the last sampled value of
the control inputs vector. To compute the feedback gains
of the optimal controller an algebraic Riccati equation
is repetitively solved at each time‐step of the control
algorithm. The global stability properties of the non‐
linear optimal control method are proven through Lya‐
punov analysis. To implement control method (ii), that
is flatness‐based control in successive loops, the state‐
spacemodel of the omnidirectional 3‐wheel autonomous
mobile robot is separated into chained subsystems,which
are connected in cascading loops. Each one of these
subsystems can be viewed independently as a differen‐
tially flat system and control about it can be performed
with inversion of its dynamics as in the case of input‐
output linearized flat systems. The state variables of
the preceding (i‐th) subsystem become virtual control
inputs for the subsequent (i+1‐th) subsystem. In turn,
exogenous control inputs are applied to the last subsys‐
tem. The whole control method is implemented in suc‐
cessive loops and its global stability properties are also
proven through Lyapunov stability analysis. The proposed
method achieves trajectory tracking and autonomous
navigation for the omnidirectional 3‐wheel autonomous
mobile robots without the need of diffeomorphisms and
complicated state‐space model transformations.

Keywords: omnidirectional 3‐wheel autonomous mobile
robots, autonomous navigation, differential flatness
properties, nonlinear optimal control, flatness‐based
control in successive loops, global stability

1. Introduction
The3‐wheel omnidirectionalmobile robot is a spe‐

cial type of robotic vehicle that is capable of perform‐
ing motion in all directions of the horizontal plane
without nonholonomic constraints [1‐4].

It has three degrees of freedomassociatedwith the
cartesian coordinates of its center of gravity in thehor‐
izontal plane and with its orientation (heading) angle
with respect to the horizontal axis of an inertial coor‐
dinates frame [5–7]. Its actuation comes from three
DCmotors whichmake thewheels of themobile robot
turn at the speciϐied speed [8–10]. Suchmobile robots
can be directed precisely along complicated paths and
have improved maneuverability [11–14]. To achieve
control of such robots and their autonomous naviga‐
tion along speciϐic trajectories, suitable values for the
turn speed of the wheels have to be reached which
in turn are associated with speciϐic voltage inputs of
its motors [15–17]. Omnidirectional 3‐wheel mobile
robots are met in several applications associated with
patrolling and security tasks, cleaning anddisinfecting
tasks, with the transfer of products inwarehouses and
with automated delivery tasks, as well as with several
agricultural tasks for instance spraying, weeding or
harvesting [18–20]. Omnidirectional 2‐wheel mobile
robots have nonlinear and multi‐variable dynamics
and so‐far several nonlinear control methods have
been proposed about them [21–25]. In certain cases
autonomous navigation of 3‐wheel omnidirectional
mobile robots has been based on state estimation‐
based control or visual servoing [26–29] . The present
article develops and tests two new control methods
for the dynamic model of 3‐wheel omnidirectional
mobile robots. Thesemethods are (i) a novel nonlinear
optimal control approach, (ii) a ϐlatness‐based control
approach which is implemented in successive loops.
Both control schemes avoid changes of state variables
in the dynamic model of the 3‐wheel mobile robot as
well as complicated transformations of the state space
model of this system.

In the ϐirst control method which is proposed by
the present article, that is nonlinear optimal control,
the dynamic model of the omnidirectional 3‐wheel
mobile robot undergoes approximate linearization
through ϐirst‐order Taylor series expansion [30–31].
The linearization process takes place at each sampling
instance and computes the robot’s Jacobian matrices
around a temporary operating point which is deϐined
by the present value of its state vector and by the last
sampled value of the control inputs vector [32–34].
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The modelling error which is due to truncation of
higher‐order terms in the Taylor series expansion is
considered to be a perturbation which is asymptot‐
ically compensated by the robustness of the control
algorithm. For the approximately linearized model of
the omnidirectional robot an H‐inϐinity controller is
deϐined. This controller represents a min‐max differ‐
ential game taking place between (i) the robot’s con‐
trol inputs which try to minimize a cost function that
contains a quadratic term of the state vector’s track‐
ing error and (ii) the model uncertainty and exoge‐
nous perturbation terms which try to maximize this
cost function. To compute the controller’s feedback
gains an algebraic Riccati equation has to be repeti‐
tively solved at each time‐step of the control algorithm
[35–36]. The global stability properties of this con‐
trol scheme are proven through Lyapunov analysis.
At a ϐirst stage the H‐inϐinity tracking performance
criterion is shown to hold which signiϐies robustness
to model uncertainty and perturbations. Moreover,
under moderate conditions, global asymptotic stabil‐
ity is proven [37–38]. The nonlinear optimal control
method achieves fast and accurate tracking of refer‐
ence setpoints by the state variables of the mobile
robot under moderate variations of its control inputs.
Besides, it achievesminimization of energy dispersion
by the actuators of the omnidirectional autonomous
vehicle and the improvement of this robot’s autonomy
and operational capacity.

In the second control method which is proposed
by the present article, that is ϐlatness‐based control in
successive loops, it is shown that the dynamic model
of the 3‐wheel omnidirectional mobile robot can be
decomposed into subsystems which are connected in
chained form [36]. In this chained state‐space descrip‐
tion the state variables of the subsequent (i+1‐th) sub‐
system become virtual control inputs in the preced‐
ing (i‐th) subsystem. Additionally, the virtual control
inputs of the preceding (i‐th) subsystem become set‐
points for the subsequent (i+1‐th) subsystem [39–40].
It is also proven that each one of these subsystems,
if viewed independently, is differentially ϐlat. Thus it
can be concluded that the individual subsystems are
input‐output linearizable and a stabilizing ϐlatness‐
based controller can be designed for each one of them
through inversion of their dynamics, as it is commonly
done for input‐output linearized systems. The real
control inputs which are applied to the mobile robot
are computed from the last subsystem. Starting from
it, the chained state‐space description of the mobile
robot is traced backwards, that is from the last to
the ϐirst subsystem, within each sampling period. The
global stability properties of this control method are
proven throughLyapunov analysis. The ϐlatness‐based
control method is suboptimal in the sense that it does
not target explicitly at the minimization of the vari‐
ations of the control inputs of the robot, however it
also achieves precise tracking of reference trajecto‐
ries in the 2D plane by the 3‐wheel omnidirectional
autonomous vehicle.

The structure of the paper is as follows: (i)
in Section 2 the dynamic model of the 3‐wheel
omnidirectional mobile robot is analyzed and the
associated state‐space model is formulated. In
Section 3 a nonlinear optimal controller is designed
for the dynamicmodel of the 3‐wheel omnidirectional
mobile robot basedon the computationof the system’s
Jacobian matrices. In Section 4 a multi‐loop ϐlatness‐
based controller is designed for the dynamic model
of the autonomous robotic vehicle after decomposing
its state‐space model into subsystens which are
connected in chained form and which independently
satisfy differential ϐlatness properties. In Section 5
simulation tests are performed to further conϐirm the
ϐine performance of the two aforementioned control
methods. Finally, in Section 6 concluding remarks are
stated.

2. Dynamic Model of the 3‐wheel Omnidirec‐
tional Mobile Robot

2.1. State‐space Description of the 3‐wheel Omnidirec‐
tional Robot

The diagram of the 3‐wheel omnidirectional
mobile robot is given in Figure 1. The diagram depicts
the position (𝑥, 𝑦) of the center of gravity of themobile
robot in the horizontal plane and the robot’s heading
angle 𝜃. Besides, the two coordinate frames which
are used in the deϐinition of the robot’s kinematic
and dynamic model are given, namely the body‐ϐixed
reference frame 𝑂𝑀𝑋𝑀𝑌𝑀 and the inertial reference
frame 𝑂𝑊𝑋𝑊𝑌𝑊 . The parameters of the dynamic
model of the robot are outlined in Table 1 [1],[3]:

The dynamic model of the mobile robot is given by
[1],[3]:

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + �̄� = 𝐵𝑢 (1)

The disturbances vector �̄� = [𝑑𝑥 , 𝑑𝑦 , 𝑑𝜃]𝑇 com‐
prises friction forces thus taking the form �̄� =
[𝑑1�̇�, 𝑑2�̇�, 𝑑3�̇�]𝑇 . The control inputs vector is 𝑢 =
[𝑢1, 𝑢2, 𝑢3]𝑇 . The inertia matrix𝑀 is given by

𝑀 = ൮

3
2𝑝0 +𝑚 0 0

0 3
2𝑝0 +𝑚 0

0 0 3𝐿2𝑜 + 𝐼𝑣
൲ (2)

The Coriolis matrix 𝐶 is given by

𝐶 = ൮

3
2𝑝1

3
2𝑝𝑚�̇� 0

−3
2𝑝𝑚�̇�

3
2𝑝1 0

0 0 3𝑝1𝐿2𝑜
൲ (3)

The control inputs gain matrix 𝐵 is given by

𝐵 = 𝑝2൮
−1
2𝑐𝑜𝑠(𝜃) −

√3
2 𝑠𝑖𝑛(𝜃)

−1
2𝑠𝑖𝑛(𝜃) +

√3
2 𝑐𝑜𝑠(𝜃)

𝐿𝑜

−1
2𝑐𝑜𝑠(𝜃) +

√3
2 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

−1
2𝑐𝑜𝑠(𝜃) −

√3
2 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜃)

𝐿𝑜 𝐿𝑜
൲ (4)
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Figure 1. Diagram of the 3‐wheel omnidirectional mobile robot and the associated inertial and body‐fixed reference
frames

Table 1. Dynamic model of 3‐wheel omnidirectional robot

Parameter Deϔinition
𝑞 = [𝑥, 𝑦, 𝜃]𝑇 robot’s position and orientation in inertial frame
�̇� = [�̇�, �̇�, �̇�]𝑇 robot’s linear and angular velocity in inertial frame
�̈� = [�̈�, �̈�, �̈�]𝑇 robot’s linear and angular acceleration in inertial frame

𝑛 gears reduction ratio between the motors and the wheels
𝑟 radius of the wheels of the omnidirectional robot
𝑚 mass of the omnidirectional robot
𝐼𝑎 moment of inertia of wheel, gear and motor

𝑘𝑡, 𝑘𝑏 motors’ torque and back EMF constants
𝐼𝑣 moment of inertia for robot’s rotation around the vertical axis
𝐿𝑜 radius of the robot’s cylindrical section
𝑏𝑎 viscous friction coefϐicient of wheel, gear and rotor shaft
𝑅𝑎 resistance of the motors’ armature

where coefϐicients 𝑝0, 𝑝1, 𝑝2 are deϐined as

𝑝0 =
𝑛2𝐼𝑜
𝑟2 𝑝1 =

𝜂2
2 (𝑏𝑜 +

𝑘𝑡𝑘𝑏
𝑅𝑎

) 𝑝2 =
𝑛𝑘𝑡
𝑟𝑅𝑎

(5)

The inverse of the inertia matrix𝑀 is given by

𝑀−1 = ⎛
⎜

⎝

1
3
2𝑝0+𝑚

0 0

0 1
3
2𝑝0+𝑚

0

0 0 1
3𝑝0𝐿20+𝐼𝑣

⎞
⎟

⎠

(6)

Then from Eq. (1) one has the following state‐
space description:

�̈� = −𝑀(𝑞)−1[𝐶(𝑞, �̇�)�̇� + �̄�] + 𝑀(𝑞)−1𝐵𝑢 (7)

which is analytically written in the form

ቌ
�̈�
�̈�
�̈�
ቍ = −⎛

⎜

⎝

1
3
2𝑝0+𝑚

0 0

0 1
3
2𝑝0+𝑚

0

0 0 1
3𝑝0𝐿20+𝐼𝑣

⎞
⎟

⎠

൦൮

3
2𝑝1

3
2𝑝𝑚�̇� 0

−3
2𝑝𝑚�̇�

3
2𝑝1 0

0 0 3𝑝1𝐿2𝑜
൲ቌ

�̇�
�̇�
�̇�
ቍ + ቌ

𝑑1�̇�
𝑑2�̇�
𝑑3�̇�

ቍ൪

+ 𝑝2
⎛
⎜

⎝

1
3
2𝑝0+𝑚

0 0

0 1
3
2𝑝0+𝑚

0

0 0 1
3𝑝0𝐿20+𝐼𝑣

⎞
⎟

⎠

൮
−1
2𝑐𝑜𝑠(𝜃) −

√3
2 𝑠𝑖𝑛(𝜃)

−1
2𝑠𝑖𝑛(𝜃) +

√3
2 𝑐𝑜𝑠(𝜃)

𝐿𝑜

−1
2𝑐𝑜𝑠(𝜃) +

√3
2 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

−1
2𝑐𝑜𝑠(𝜃) −

√3
2 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜃)

𝐿𝑜 𝐿𝑜
൲ቌ

𝑢1
𝑢2
𝑢3
ቍ (8)

After intermediate operations, the state‐space
description of the 3‐wheel omnidirectional robot
becomes

⎛
⎜

⎝

�̈�

�̈�

�̈�

⎞
⎟

⎠

=

⎛
⎜
⎜
⎜
⎜
⎜

⎝

3
2𝑝1�̇�+

3
2𝑝0�̇��̇�+𝑑1�̇�

3
2𝑝0+𝑚

− 3
2𝑝0�̇��̇�+

3
2𝑝1�̇�+𝑑2�̇�

3
2𝑝0+𝑚

3𝑝1𝐿20+𝑑3�̇�
3
2𝑝0+𝑚

⎞
⎟
⎟
⎟
⎟
⎟

⎠
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+ 𝑝2

⎛
⎜
⎜
⎜
⎜

⎝

−𝑐𝑜𝑠(𝜃)−√3𝑠𝑖𝑛(𝜃)
2( 32𝑝0+𝑚)

−𝑠𝑖𝑛(𝜃)+√3𝑐𝑜𝑠(𝜃)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟
⎟

⎠

𝑢1

+ 𝑝2

⎛
⎜
⎜
⎜
⎜

⎝

−𝑐𝑜𝑠(𝜃)+√3𝑠𝑖𝑛(𝜃)
2( 32𝑝0+𝑚)

−𝑐𝑜𝑠(𝜃)−√3𝑠𝑖𝑛(𝜃)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟
⎟

⎠

𝑢2

+ 𝑝2

⎛
⎜
⎜
⎜

⎝

𝑐𝑜𝑠(𝜃)
2( 32𝑝0+𝑚)

𝑠𝑖𝑛(𝜃)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟

⎠

𝑢3 (9)

The state vector of the 3‐wheel omnidirectional
robot is deϐined next as

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]𝑇⇒𝑥 = [𝑥, 𝑦, 𝜃, �̇�, �̇�, �̇�]𝑇
(10)

and using this notation, the dynamic model of the
mobile robot is written as

⎛
⎜
⎜

⎝

�̇�1
�̇�2
�̇�3
�̇�4
�̇�5
�̇�6

⎞
⎟
⎟

⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑥4
𝑥5
𝑥6

3
2𝑝1𝑥4+

3
2𝑝0𝑥5𝑥6+𝑑1𝑥4
3
2𝑝0+𝑚

− 3
2𝑝0𝑥4𝑥6+

3
2𝑝1𝑥5+𝑑2𝑥5

3
2𝑝0+𝑚

3𝑝1𝐿20+𝑑3𝑥6
3
2𝑝0+𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

+ 𝑝2

⎛
⎜
⎜
⎜
⎜
⎜

⎝

0
0
0

−𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

−𝑠𝑖𝑛(𝑥3)+√3𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟
⎟
⎟

⎠

𝑢1

+ 𝑝2

⎛
⎜
⎜
⎜
⎜
⎜

⎝

0
0
0

−𝑐𝑜𝑠(𝑥3)+√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

−𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟
⎟
⎟

⎠

𝑢2

+ 𝑝2

⎛
⎜
⎜
⎜
⎜

⎝

0
0
0

𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)
𝑠𝑖𝑛(𝑥3)

2( 32𝑝0+𝑚)
𝐿𝑜

3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟
⎟

⎠

𝑢3 (11)

The dynamic model of the omnidirectional 3‐
wheel mobile robot can be also written in the nonlin‐
ear afϐine‐in‐the‐input state‐space form

�̇� = 𝑓(𝑥) + 𝑔1(𝑥)𝑢1 + 𝑔2(𝑥)𝑢2 + 𝑔3(𝑥)𝑢3 (12)

where 𝑥∈𝑅6×1, 𝑓(𝑥)∈𝑅6×1, 𝑔𝑖(𝑥)∈𝑅6×1 and 𝑢𝑖∈𝑅 for
𝑖 = 1, 2, 3. About vectors 𝑓(𝑥) and 𝑔𝑖(𝑥) 𝑖 = 1, 2, 3 one
has that

𝑓(𝑥) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑥4
𝑥5
𝑥6

3
2𝑝1𝑥4+

3
2𝑝0𝑥5𝑥6+𝑑1𝑥4
3
2𝑝0+𝑚

− 3
2𝑝0𝑥4𝑥6+

3
2𝑝1𝑥5+𝑑2𝑥5

3
2𝑝0+𝑚

3𝑝1𝐿20+𝑑3𝑥6
3
2𝑝0+𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

𝑔1(𝑥) = 𝑝2

⎛
⎜
⎜
⎜
⎜
⎜

⎝

0
0
0

−𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

−𝑠𝑖𝑛(𝑥3)+√3𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟
⎟
⎟

⎠

𝑔2(𝑥) = 𝑝2

⎛
⎜
⎜
⎜
⎜
⎜

⎝

0
0
0

−𝑐𝑜𝑠(𝑥3)+√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

−𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟
⎟
⎟

⎠

𝑔3(𝑥) = 𝑝2

⎛
⎜
⎜
⎜
⎜

⎝

0
0
0

𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)
𝑠𝑖𝑛(𝑥3)

2( 32𝑝0+𝑚)
𝐿𝑜

3𝑝0𝐿2𝑜+𝑚)

⎞
⎟
⎟
⎟
⎟

⎠

(13)

Additionally, using that the control inputs
gain matrix of the mobile robot is 𝑔(𝑥) =
[𝑔1(𝑥), 𝑔2(𝑥), 𝑔3(𝑥)] one has

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (14)
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2.2. Differential Flatness of the 3‐wheel Omnidirec‐
tional Mobile Robot

The dynamic model of the 3‐wheel omnidirec‐
tional mobile robot that was given in Eq. (11) is differ‐
entially ϐlat, with ϐlat outputs vector 𝑌 = [𝑥1, 𝑥2, 𝑥3]𝑇
or 𝑌 = [𝑥, 𝑦, 𝜃]𝑇 . Indeed from the ϐirst three rows of
the state‐spacedescriptionof Eq. (11) oneobtains that

𝑥4 = �̇�1 𝑥5 = �̇�2 𝑥6 = �̇�3 (15)

which signiϐies that state variables 𝑥4, 𝑥5, 𝑥6 are differ‐
ential functions of the ϐlat outputs vector 𝑌. Moreover,
from the last three rows of the state‐space model of
the system one has that

ቌ
𝑢1
𝑢2
𝑢3
ቍ =

⎛
⎜

⎝

−𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

−𝑠𝑖𝑛(𝑥3)+√3𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

−𝑐𝑜𝑠(𝑥3)+√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)

−𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟

⎠

−1

⎡
⎢
⎢
⎢
⎢
⎣

ቌ
�̇�4
�̇�5
�̇�6
ቍ −

⎛
⎜
⎜

⎝

3
2𝑝1𝑥4+

3
2𝑝0𝑥5𝑥6+𝑑1𝑥4
3
2𝑝0+𝑚

− 3
2𝑝0𝑥4𝑥6+

3
2𝑝1𝑥5+𝑑2𝑥5

3
2𝑝0+𝑚

3𝑝1𝐿20+𝑑3𝑥6
3
2𝑝0+𝑚

⎞
⎟
⎟

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(16)

where all terms that appear in the right part of Eq.
(16) are differential functions of the ϐlat outputs vec‐
tor, consequently the control inputs 𝑢1, 𝑢2, 𝑢3 are
also differential functions of the ϐlat outputs vector 𝑌.
Therefore, the entire dynamic model of the 3‐wheel
omnidirectional mobile robot is a differentially ϐlat
system.

The differential ϐlatness property is an implicit
proof of the system’s controllability, as well as of its
input‐output linearizability. It also allows for solving
the setpoints deϐinition problem.

3. Design of a Nonlinear Optimal Controller
3.1. Approximate Linearization of the Dynamics of the

3‐wheel Omnidirectional Robot

The dynamic model of the 3‐wheel omnidirec‐
tional mobile robot undergoes approximate lineariza‐
tion around the temporary operating point (𝑥∗, 𝑢∗)
which is deϐined at each sampling instant by the
present value of the system’s state vector 𝑥∗ and by
the last sampled value of the control inputs vector
𝑢∗. The linearization process is based on ϐirst‐order
Taylor series expansion and on the computation of the
associated Jacobian matrices.

Themodelling error which is due to the truncation
of higher‐order terms from the Taylor series is consid‐
ered to be a perturbationwhich is asymptotically com‐
pensated by the robustness of the control algorithm.
The initial nonlinear state‐space model of the system
of Eq. (14) in the form �̇� = 𝑓(𝑥)+𝑔(𝑥)𝑢, is turned into
the equivalent linearized state‐space form

�̇� = 𝐴𝑥 + 𝐵𝑢 + �̃� (17)

where �̃� is the cumulative disturbances vector which
may comprise (i) modelling error due to the trunca‐
tion of higher‐order terms from the Taylor series, (ii)
exogenous perturbations, (iii) sensor measurement
noise of any distribution. The Jacobian matrices of the
system are given by:

𝐴 = ∇𝑥[𝑓(𝑥) + 𝑔(𝑥)𝑢] ∣(𝑥∗ ,𝑢∗) ⇒

𝐴 = ∇𝑥𝑓(𝑥) ∣(𝑥∗ ,𝑢∗) +∇𝑥𝑔1(𝑥)𝑢1 ∣(𝑥∗ ,𝑢∗)
+ ∇𝑥𝑔2(𝑥)𝑢2 ∣(𝑥∗ ,𝑢∗) +∇𝑥𝑔3(𝑥)𝑢3 ∣(𝑥∗ ,𝑢∗) (18)

𝐵 = ∇𝑢[𝑓(𝑥) + 𝑔(𝑥)𝑢] ∣(𝑥∗ ,𝑢∗) ⇒𝐵 = 𝑔(𝑥) ∣(𝑥∗ ,𝑢∗)
(19)

The linearization approach which has been fol‐
lowed for implementing the nonlinear optimal control
scheme results into a quite accurate model of the sys‐
tem’s dynamics. Consider for instance the following
afϐine‐in‐the‐input state‐space model

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢⇒
�̇� = [𝑓(𝑥∗) + ∇𝑥𝑓(𝑥) ∣𝑥∗ (𝑥 − 𝑥∗)] + [𝑔(𝑥∗)

+ ∇𝑥𝑔(𝑥) ∣𝑥∗ (𝑥 − 𝑥∗)]𝑢∗ + 𝑔(𝑥∗)𝑢∗

+ 𝑔(𝑥∗)(𝑢 − 𝑢∗) + �̃�1⇒
�̇� = [∇𝑥𝑓(𝑥) ∣𝑥∗ +∇𝑥𝑔(𝑥) ∣𝑥∗ 𝑢∗]𝑥 + 𝑔(𝑥∗)𝑢

− [∇𝑥𝑓(𝑥) ∣𝑥∗ +∇𝑥𝑔(𝑥) ∣𝑥∗ 𝑢∗]𝑥∗ + 𝑓(𝑥∗)

+ 𝑔(𝑥∗)𝑢∗ + �̃�1 (20)

where �̃�1 is the modelling error due to truncation of
higher order terms in the Taylor series expansion of
𝑓(𝑥) and 𝑔(𝑥). Next, by deϐining 𝐴 = [∇𝑥𝑓(𝑥) ∣𝑥∗
+∇𝑥𝑔(𝑥) ∣𝑥∗ 𝑢∗], 𝐵 = 𝑔(𝑥∗) one obtains

�̇� = 𝐴𝑥 + 𝐵𝑢 − 𝐴𝑥∗ + 𝑓(𝑥∗) + 𝑔(𝑥∗)𝑢∗ + �̃�1
(21)

Moreover by denoting �̃� = −𝐴𝑥∗ + 𝑓(𝑥∗) +
𝑔(𝑥∗)𝑢∗ + �̃�1 about the cumulative modelling error
term in the Taylor series expansion procedure one has

�̇� = 𝐴𝑥 + 𝐵𝑢 + �̃� (22)

which is the approximately linearized model of the
dynamics of the system of Eq. (14). The term 𝑓(𝑥∗) +
𝑔(𝑥∗)𝑢∗ is the derivative of the state vector at (𝑥∗, 𝑢∗)
which is almost annihilated by−𝐴𝑥∗.

The Jacobian matrices of the linearized mobile
robot are computed as follows:
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Computation of the Jacobian matrix
∇𝑥𝑓(𝑥) ∣(𝑥∗ ,𝑢∗):

∇𝑥𝑓(𝑥) ∣(𝑥∗ ,𝑢∗)=

⎛
⎜
⎜
⎜
⎜
⎜

⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0

3
2𝑝1+𝑑1
3
2𝑝0+𝑚

3
2𝑝0𝑥6
3
2𝑝0+𝑚

3
2𝑝0𝑥5
3
2𝑝0+𝑚

0 0 0 − 3
2𝑝0𝑥6

3
2𝑝0+𝑚

3
2𝑝1+𝑑2
3
2𝑝0+𝑚

− 3
2𝑝0𝑥4

3
2𝑝0+𝑚

0 0 0 0 0 𝑑3
3𝑝0𝐿2𝑜+𝐼𝑣

⎞
⎟
⎟
⎟
⎟
⎟

⎠
(23)

Computation of the Jacobian matrix
∇𝑥𝑔1(𝑥) ∣(𝑥∗ ,𝑢∗):

∇𝑥𝑔1(𝑥) ∣(𝑥∗ ,𝑢∗)=

⎛
⎜
⎜
⎜
⎜

⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝑠𝑖𝑛(𝑥3)+√3𝑐𝑜𝑠(𝑥3)

2( 32𝑝0+𝑚)
0 0

0 0 0 −𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

0 0
0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟

⎠
(24)

Computation of the Jacobian matrix
∇𝑥𝑔2(𝑥) ∣(𝑥∗ ,𝑢∗):

∇𝑥𝑔2(𝑥) ∣(𝑥∗ ,𝑢∗)=

⎛
⎜
⎜
⎜
⎜

⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝑠𝑖𝑛(𝑥3)+√3𝑐𝑜𝑠(𝑥3)

2( 32𝑝0+𝑚)
0 0

0 0 0 𝑠𝑖𝑛(𝑥3)−√3𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)

0 0
0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟

⎠
(25)

Computation of the Jacobian matrix
∇𝑥𝑔3(𝑥) ∣(𝑥∗ ,𝑢∗):

∇𝑥𝑔3(𝑥) ∣(𝑥∗ ,𝑢∗)=

⎛
⎜
⎜
⎜
⎜

⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −𝑠𝑖𝑛(𝑥3)

( 32𝑝0+𝑚)
0 0

0 0 0 𝑐𝑜𝑠(𝑥3)
( 32𝑝0+𝑚)

0 0
0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟

⎠
(26)

3.2. Stabilizing Feedback Control

After linearization around its current operating
point (𝑥∗, 𝑢∗), the dynamicmodel of the3‐wheel omni‐
directional mobile robot is written as [30]

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝑑1 (27)

Parameter 𝑑1 stands for the linearization error
in the 3‐wheel omnidirectional mobile robot’s model
appearing previously in Eq. (27). The reference set‐
points for the 3‐wheel omnidirectional mobile robot’s
state vector are denoted by 𝒙𝒅 = [𝑥𝑑1 , ⋯ , 𝑥𝑑6 ]. Tracking
of this trajectory is achieved after applying the control
input 𝑢∗.

At every time instant the control input 𝑢∗ is
assumed to differ from the control input 𝑢 appearing
in Eq. (27) by an amount equal to Δ𝑢, that is 𝑢∗ =
𝑢 + Δ𝑢

�̇�𝑑 = 𝐴𝑥𝑑 + 𝐵𝑢∗ + 𝑑2 (28)
The dynamics of the controlled system described

in Eq. (27) can be also written as

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑢∗ − 𝐵𝑢∗ + 𝑑1 (29)

and by denoting 𝑑3 = −𝐵𝑢∗ + 𝑑1 as an aggregate
disturbance term one obtains

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑢∗ + 𝑑3 (30)

By subtracting Eq. (28) from Eq. (30) one has

�̇� − �̇�𝑑 = 𝐴(𝑥 − 𝑥𝑑) + 𝐵𝑢 + 𝑑3 − 𝑑2 (31)

By denoting the tracking error as 𝑒 = 𝑥 − 𝑥𝑑 and
the aggregate disturbance term as 𝐿�̃� = 𝑑3 − 𝑑2, the
tracking error dynamics becomes

�̇� = 𝐴𝑒 + 𝐵𝑢 + 𝐿�̃� (32)

where 𝐿 is the disturbance input gain matrix. For the
approximately linearized model of the system a stabi‐
lizing feedback controller is developed. The controller
has the form

𝑢(𝑡) = −𝐾𝑒(𝑡) (33)

with 𝐾 = 1
𝑟𝐵

𝑇𝑃 where 𝑃 is a positive deϐinite sym‐
metric matrix which is obtained from the solution of
the Riccati equation [30]

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃(2𝑟𝐵𝐵
𝑇 − 1

𝜌2 𝐿𝐿
𝑇)𝑃 = 0 (34)

The previously analyzed concept about the nonlin‐
ear optimal control loop for the three‐wheel omnidi‐
rectional mobile robot is given in Figure 2.
where 𝑄 is a positive semi‐deϐinite symmetric matrix.
Whereas the Linear Quadratic Regulator (LQR) is the
solution of the quadratic optimal control problem
using Bellman’s optimality principle, H‐inϐinity con‐
trol is the solution of the optimal control problem
under model uncertainty and external perturbations.
The cost function that is subject tominimization in the
case of LQR comprises a quadratic term of the state
vector’s tracking error, as well as a quadratic term
of the variations of the control inputs. In the case of
H‐inϐinity control the cost function is extended with
the inclusion of a quadratic term of the cumulative
disturbance and model uncertainty inputs that affect
the model of the controlled system.

In the case of the 3‐wheel omnidirectional mobile
robot, the vehicle’s dynamic model is nonlinear and
is also affected by uncertainty and external perturba‐
tions. By applying approximate linearization to the 3‐
wheel omnidirectional mobile robot’s dynamics one
obtains a linear state‐space description which is sub‐
ject to modelling imprecision and exogenous distur‐
bances. Therefore, one can arrive at a solution of the
related optimal control problem only by applying the
H‐inϐinity control approach.
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Figure 2. Diagram of the nonlinear optimal control scheme for the omnidirectional three‐wheel mobile robot [Source:
Authors’ own work]

It is also noted that the solution of the H‐inϐinity
feedback control problem for the 3‐wheel omnidi‐
rectional mobile robot and the computation of the
worst casedisturbance that this controller can sustain,
comes from superposition of Bellman’s optimality
principle when considering that the robot is affected
by two separate inputs (i) the control input 𝑢 (ii) the
cumulative disturbance input �̃�(𝑡). Solving the opti‐
mal control problem for 𝑢 that is for the minimum
variation (optimal) control input that achieves elimi‐
nation of the state vector’s tracking error gives 𝑢 =
−1

𝑟𝐵
𝑇𝑃𝑒. Equivalently, solving the optimal control

problem for �̃�, that is for the worst case disturbance
that the control loop can sustain gives �̃� = 1

𝜌2 𝐿
𝑇𝑃𝑒.

3.3. Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be
shown that the proposed nonlinear control scheme
assures 𝐻∞ tracking performance for the 3‐wheel
omnidirectional mobile robot, and that in case of
bounded disturbance terms asymptotic convergence
to the reference setpoints is achieved. The track‐
ing error dynamics for the 3‐wheel omnidirectional
mobile robot is written in the form

�̇� = 𝐴𝑒 + 𝐵𝑢 + 𝐿�̃� (35)

where in the 3‐wheel omnidirectional mobile robot’s
case 𝐿 = 𝐼∈𝑅6×6 with 𝐼 being the identity matrix.
Variable �̃� denotes model uncertainties and external
disturbances of the 3‐wheel omnidirectional mobile
robot’s model. The following Lyapunov equation is
considered

𝑉 = 1
2𝑒

𝑇𝑃𝑒 (36)

where 𝑒 = 𝑥 − 𝑥𝑑 is the tracking error. By differenti‐
ating with respect to time one obtains

�̇� = 1
2 �̇�

𝑇𝑃𝑒 + 1
2𝑒

𝑇𝑃�̇�⇒

�̇� = 1
2 [𝐴𝑒 + 𝐵𝑢 + 𝐿�̃�]𝑇𝑃𝑒 + 1

2𝑒
𝑇𝑃[𝐴𝑒 + 𝐵𝑢 + 𝐿�̃�]⇒

�̇� = 1
2 [𝑒

𝑇𝐴𝑇 + 𝑢𝑇𝐵𝑇 + �̃�𝑇𝐿𝑇]𝑃𝑒

+ 1
2𝑒

𝑇𝑃[𝐴𝑒 + 𝐵𝑢 + 𝐿�̃�]⇒

�̇� = 1
2𝑒

𝑇𝐴𝑇𝑃𝑒 + 1
2𝑢

𝑇𝐵𝑇𝑃𝑒 + 1
2 �̃�

𝑇𝐿𝑇𝑃𝑒 + 1
2𝑒

𝑇𝑃𝐴𝑒

+ 1
2𝑒

𝑇𝑃𝐵𝑢 + 1
2𝑒

𝑇𝑃𝐿�̃� (37)

The previous equation is rewritten as

�̇� = 1
2𝑒

𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑒 + (12𝑢
𝑇𝐵𝑇𝑃𝑒 + 1

2𝑒
𝑇𝑃𝐵𝑢)

+ (12 �̃�
𝑇𝐿𝑇𝑃𝑒 + 1

2𝑒
𝑇𝑃𝐿�̃�) (38)

Assumption: For given positive deϐinite matrix 𝑄
and coefϐicients 𝑟 and 𝜌 there exists a positive deϐinite
matrix 𝑃, which is the solution of the following matrix
equation

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 + 𝑃(2𝑟𝐵𝐵
𝑇 − 1

𝜌2 𝐿𝐿
𝑇)𝑃 (39)

Moreover, the following feedback control law is
applied to the system

𝑢 = −1
𝑟𝐵

𝑇𝑃𝑒 (40)
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By substituting Eq. (39) and Eq. (40) into Eq.
(38) and by performing intermediate operations one
obtains

�̇� = 1
2𝑒

𝑇[−𝑄 + 𝑃(2𝑟𝐵𝐵
𝑇 − 1

2𝜌2 𝐿𝐿
𝑇)𝑃]𝑒

+ 𝑒𝑇𝑃𝐵(−1𝑟𝐵
𝑇𝑃𝑒) + 𝑒𝑇𝑃𝐿�̃�⇒

�̇� = −1
2𝑒

𝑇𝑄𝑒 + (1𝑟 𝑒
𝑇𝑃𝐵𝐵𝑇𝑃𝑒 − 1

2𝜌2 𝑒
𝑇𝑃𝐿𝐿𝑇𝑃𝑒)

− 1
𝑟 𝑒

𝑇𝑃𝐵𝐵𝑇𝑃𝑒) + 𝑒𝑇𝑃𝐿�̃�⇒

�̇� = −1
2𝑒

𝑇𝑄𝑒 − 1
2𝜌2 𝑒

𝑇𝑃𝐿𝐿𝑇𝑃𝑒 + 𝑒𝑇𝑃𝐿�̃�⇒

�̇� = −1
2𝑒

𝑇𝑄𝑒 − 1
2𝜌2 𝑒

𝑇𝑃𝐿𝐿𝑇𝑃𝑒 + 1
2𝑒

𝑇𝑃𝐿�̃�

+ 1
2 �̃�

𝑇𝐿𝑇𝑃𝑒 (41)

Lemma: The following inequality holds
1
2𝑒

𝑇𝑃𝐿�̃� + 1
2 �̃�𝐿

𝑇𝑃𝑒 − 1
2𝜌2 𝑒

𝑇𝑃𝐿𝐿𝑇𝑃𝑒≤1
2𝜌

2�̃�𝑇�̃�
(42)

Proof : The binomial (𝜌𝛼 − 1
𝜌𝑏)

2 is considered.
Expanding the left part of the above inequality one
gets

𝜌2𝑎2 + 1
𝜌2 𝑏

2 − 2𝑎𝑏 ≥ 0 ⇒ 1
2𝜌

2𝑎2 + 1
2𝜌2 𝑏

2 − 𝑎𝑏 ≥ 0 ⇒
𝑎𝑏 − 1

2𝜌2 𝑏
2 ≤ 1

2𝜌
2𝑎2 ⇒ 1

2𝑎𝑏 +
1
2𝑎𝑏 −

1
2𝜌2 𝑏

2 ≤ 1
2𝜌

2𝑎2
(43)

The following substitutions are carried out: 𝑎 = �̃�
and 𝑏 = 𝑒𝑇𝑃𝐿 and the previous relation becomes

1
2 �̃�

𝑇𝐿𝑇𝑃𝑒 + 1
2𝑒

𝑇𝑃𝐿�̃� − 1
2𝜌2 𝑒

𝑇𝑃𝐿𝐿𝑇𝑃𝑒≤1
2𝜌

2�̃�𝑇�̃�
(44)

Eq. (44) is substituted in the last row of Eq. (41)
and the inequality is enforced, thus giving

�̇�≤ − 1
2𝑒

𝑇𝑄𝑒 + 1
2𝜌

2�̃�𝑇�̃� (45)

Eq. (45) shows that the 𝐻∞ tracking performance
criterion is satisϐied. The integration of �̇� from 0 to 𝑇
gives

∫𝑇0 �̇�(𝑡)𝑑𝑡≤ − 1
2∫

𝑇
0 ||𝑒||2𝑄𝑑𝑡 +

1
2𝜌

2∫𝑇0 ||�̃�||2𝑑𝑡⇒
2𝑉(𝑇) + ∫𝑇0 ||𝑒||2𝑄𝑑𝑡≤2𝑉(0) + 𝜌2∫𝑇0 ||�̃�||2𝑑𝑡

(46)
Moreover, if there exists a positive constant𝑀𝑑 >

0 such that ∫∞0 ||�̃�||2𝑑𝑡 ≤ 𝑀𝑑 then one gets

∫∞0 ||𝑒||2𝑄𝑑𝑡 ≤ 2𝑉(0) + 𝜌2𝑀𝑑 (47)

Thus, the integral ∫∞0 ||𝑒||2𝑄𝑑𝑡 is bounded. More‐
over, 𝑉(𝑇) is bounded and from the deϐinition of the
Lyapunov function 𝑉 in Eq. (36) it becomes clear that
𝑒(𝑡) will be also bounded since 𝑒(𝑡) ∈ Ω𝑒 =
{𝑒|𝑒𝑇𝑃𝑒≤2𝑉(0) + 𝜌2𝑀𝑑}. According to the above
and with the use of Barbalat’s Lemma one obtains
𝑙𝑖𝑚𝑡→∞𝑒(𝑡) = 0.

By following the stages of the stability proof one
arrives at Eq. (45) which shows that the H‐inϐinity
tracking performance criterion holds. By selecting the
attenuation coefϐicient 𝜌 to be sufϐiciently small and
in particular to satisfy 𝜌2 < ||𝑒||2𝑄/||�̃�||2 one has that
the ϐirst derivative of the Lyapunov function is upper
bounded by 0. This condition holds at each sampling
instance and consequently global stability for the con‐
trol loop can be concluded.

The nonlinear optimal control approach exhibits
advantages against other control schemes one could
have considered for the dynamics of the 3‐wheel
omnidirectional mobile robot. For instance: (1) Com‐
pared to feedback linearization with the computed‐
torque method the article’s approach achieves mini‐
mization of the variations of the control inputs and
elimination of energy dispersion by the actuators of
the mobile robot. The article’s nonlinear optimal con‐
trol avoids also inverse transformations which may
come against singularity problems (2) compared to
the global linearization‐based control schemes (such
as Lie algebra‐based control or ϐlatness‐based control
with transformation into canonical forms) it does not
require complicated changes of state variables (diffeo‐
morphisms) and transformation of the system’s state‐
space description. (3) compared to Nonlinear Model
Predictive Control, the proposed nonlinear optimal
control method is of proven global stability and the
convergence of its iterative search for an optimum
does not depend on initialization and controller’s
parametrization, (4) compared to sliding‐mode con‐
trol and backstepping control the application of the
nonlinear optimal control method is not constrained
into dynamical systems of a speciϐic state‐space form.
It is known that unless the controlled system is found
in the input‐output linearized form the deϐinition of
the associated sliding surfaces is an empirical proce‐
dure. Besides, unless the controlled system is found
in the backstepping integral (triangular) form, the
application of backstepping control is not possible (5)
compared toPID control the nonlinear optimal control
method is of proven global stability and its perfor‐
mance is not dependant on heuristics‐based selec‐
tion of parameters of the controller, (6) compared to
multiple‐models based optimal control, the nonlinear
optimal control method requires the computation of
only one linearization point and the solution of only
one Riccati equation.

4. Design of a Multi‐loop Flatness‐based
Controller for the 3‐wheel Robot
The dynamic model of the 3‐wheel omnidirec‐

tional mobile robot can be decomposed into two
chained subsystems Σ1 and Σ2, while it can be also
demonstrated that for each one of these subsystems
differential ϐlatness properties hold. First, subsystem
Σ1 is deϐined, which comprises the ϐirst three rows of
the state‐space model of Eq. (11).
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The following subvectors and submatrices are
deϐined:

𝑥1,3 = ቌ
𝑥1
𝑥2
𝑥3
ቍ 𝑓1,3 = ቌ

0
0
0
ቍ 𝑔1,3 = ቌ

1 0 0
0 1 0
0 0 1

ቍ

𝑣1 = ቌ
𝑥4
𝑥5
𝑥6
ቍ (48)

where 𝑣1 is a virtual control input comprising the
state variables of the last three rows of the state‐
space model of Eq. (11). Next, subsystem Σ2 is con‐
sidered and the following subvectors and submatrices
are deϐined

𝑥4,6 = ቌ
𝑥4
𝑥5
𝑥6
ቍ 𝑓4,6 =

⎛
⎜
⎜

⎝

3
2𝑝1𝑥4+

3
2𝑝0𝑥5𝑥6+𝑑1𝑥4
3
2𝑝0+𝑚

− 3
2𝑝0𝑥4𝑥6+

3
2𝑝1𝑥5+𝑑2𝑥5

3
2𝑝0+𝑚

3𝑝1𝐿20+𝑑3𝑥6
3
2𝑝0+𝑚

⎞
⎟
⎟

⎠
(49)

𝑔4,6 =
⎛
⎜

⎝

−𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

−𝑐𝑜𝑠(𝑥3)+√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)

−𝑠𝑖𝑛(𝑥3)+√3𝑐𝑜𝑠(𝑥3)
2( 32𝑝0+𝑚)

−𝑐𝑜𝑠(𝑥3)−√3𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

𝑠𝑖𝑛(𝑥3)
2( 32𝑝0+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

𝐿𝑜
3𝑝0𝐿2𝑜+𝑚)

⎞
⎟

⎠

𝑢 = ቌ
𝑢1
𝑢2
𝑢3
ቍ (50)

where 𝑢 is the vector of real control inputs. As a
result of the above, the dynamics of the omnidirec‐
tional robot can be written in the form of two chained
subsystems:

�̇�1,3 = 𝑓1,3(𝑥1,3) + 𝑔1,3(𝑥1,3)𝑣1 (51)

�̇�4,6 = 𝑓4,6(𝑥1,3, 𝑥4,6) + 𝑔4,6(𝑥1,3, 𝑥4,6)𝑢 (52)

It can be proven that each one of subsystems Σ1
and Σ2 is differentially ϐlat. For subsystem Σ1 the ϐlat
output is𝑌1 = 𝑥1,3. Solving for the virtual control input
𝑣1 one has

𝑣1 = 𝑔1,3(𝑥1,3)−1[�̇�1,3 − 𝑓1,3(𝑥1,3)] (53)

which signiϐies that 𝑣1 = 𝑥4,6 is a differential function
of 𝑌1 = 𝑥1,3 (indeed it holds 𝑣1 = 𝑥4,6 = �̇�1,3).
Consequently, subsystem Σ1 is differentially ϐlat.

For subsystem Σ2 the ϐlat output is 𝑌2 = 𝑥4,6. Con‐
sidering that𝑥1,3 is a coefϐicients vector and solving for
the real control input 𝑢 one has

𝑢 = 𝑔4,6(𝑥1,3, 𝑥4,6)−1[�̇�4,6 − 𝑓4,6(𝑥1,3, 𝑥4,6)] (54)

which signiϐies that 𝑢 is a differential function of 𝑌2 =
𝑥4,6. Consequently, subsystem Σ2 is differentially ϐlat.

The proof of differential ϐlatness for subsystems
Σ1 and Σ2 shows also that these subsystems are
input‐output linearizable and that they can be con‐
trolled through ϐlatness‐based control that inverts
their dynamics as it is commonly done for input‐
output linearized systems.

Indeed, for subsystem Σ1 of Eq. (51) the stabilizing
feedback control is taken to be:
𝑣1 = 𝑔1,3(𝑥1,3)−1[�̇�𝑑1,3 − 𝑓1,3(𝑥1,3) − 𝐾1(𝑥1,3 − 𝑥𝑑1,3))]

(55)
where 𝑥𝑑1,3 is the reference setpoint for subsystem Σ1
and matrix 𝐾1 > 0 is a diagonal matrix 𝐾1∈𝑅3×3 with
positive diagonal elements 𝑘1,𝑖𝑖 > 0 for 𝑖 = 1, 2, 3. The
virtual control 𝑣1 = 𝑥4,6 becomes reference setpoint
𝑥𝑑4,6 for subsystem Σ2.

For subsystem Σ2 of Eq. (52) the stabilizing feed‐
back control is taken to be:
𝑢 = 𝑔4,6(𝑥1,3, 𝑥4,6)−1

[�̇�𝑑4,6 − 𝑓4,6(𝑥1,3, 𝑥4,6) − 𝐾2(𝑥4,6 − 𝑥𝑑4,6))] (56)

where 𝑥𝑑4,6 is the reference setpoint for subsystem Σ2
and matrix 𝐾2 > 0 is a diagonal matrix 𝐾2∈𝑅3×3 with
positive diagonal elements 𝑘2,𝑖𝑖 > 0 for 𝑖 = 1, 2, 3. The
following tracking error variables are deϐined next:
𝑒1,3 = 𝑥1,3 − 𝑥𝑑1,3 and 𝑒4,6 = 𝑥4,6 − 𝑥𝑑4,6.

By substituting the control of Eq. (55) into Eq. (51)
one obtains

�̇�1,3 = 𝑓1,3(𝑥1,3) + 𝑔1,3(𝑥1,3)𝑔1,3(𝑥1,3)−1

[�̇�𝑑1,3 − 𝑓1,3(𝑥1,3) − 𝐾1(𝑥1,3 − 𝑥𝑑1,3))]⇒

(�̇�1,3 − �̇�𝑑1,3) + 𝐾1(𝑥1,3 − 𝑥𝑑1,3)⇒
�̇�1,3 + 𝐾1𝑒1,3 = 0⇒

lim
𝑡→∞

𝑒1,3 = 0⇒ lim
𝑡→∞

𝑥1,3 = 𝑥𝑑1,3 (57)

By substituting the control of Eq. (56) into Eq. (52)
one obtains
�̇�4,6 = 𝑓4,6(𝑥1,3, 𝑥4,6) + 𝑔4,6(𝑥1,3, 𝑥4.6)𝑔4,6(𝑥1,3, 𝑥4,6)−1

[�̇�𝑑4,6 − 𝑓4,6(𝑥1,3, 𝑥4,6) − 𝐾2(𝑥4,6 − 𝑥𝑑4,6))]⇒

(�̇�4,6 − �̇�𝑑4,6) + 𝐾2(𝑥4,6 − 𝑥𝑑4,6)⇒
�̇�4,6 + 𝐾2𝑒4,6 = 0⇒
lim
𝑡→∞

𝑒4,6 = 0⇒

lim
𝑡→∞

𝑥4,6 = 𝑥𝑑4,6 (58)

Consequently, all state variables of the dynamic
model of the 3‐wheel omnidirectional mobile robot
converge to the associated setpoints and the system
is globally asymptotically stable.

The global stability properties of ϐlatness‐based
control in successive loops for the dynamic model
of the 3‐wheel omnidirectional mobile robot can be
also proven through Lyapunov analysis. The following
Lyapunov function is deϐined:

𝑉 = 1
2 [𝑒

𝑇
1,3𝑒1,3 + 𝑒𝑇4,6𝑒4,6] (59)
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By differentiating the Lyapunov function of Eq.
(59) in time one obtains

�̇� = 1
22[𝑒

𝑇
1,3�̇�1,3 + 𝑒𝑇4,6�̇�4,6] (60)

By substituting in Eq. (60) the tracking error
dynamics proven in Eq. (57) and Eq. (58) one obtains

�̇� = −[𝑒𝑇1,3𝐾1𝑒1,3 + 𝑒𝑇4,6𝐾2𝑒4,6] (61)

Therefore, it holds that

�̇� < 0 ∀ 𝑒1,3≠0, 𝑒4,6≠0 (62)

while �̇� = 0 if and only if 𝑒1,3 = 0 and 𝑒4,6 = 0. Thus,
�̇� remains negative and 𝑉 is a strictly diminishing
function which converges asymptotically to 0. Thus it
holds

𝑙𝑖𝑚𝑡→∞𝑒1,3 = 0⇒𝑙𝑖𝑚𝑡→∞𝑥1,3 = 𝑥𝑑1,3
𝑙𝑖𝑚𝑡→∞𝑒4,6 = 0⇒𝑙𝑖𝑚𝑡→∞𝑥4,6 = 𝑥𝑑4,6

(63)

It is also proven that the convergence of the track‐
ing error to the zero equilibrium is exponential. The
Lyapunov function of the control loop is written as:

𝑉 = 1
2 [∑

3
𝑖=1𝑒2𝑖 + ∑6

𝑗=4𝑒2𝑗 ] (64)

where 𝑒𝑖 𝑖 = 1,⋯ , 3 are the tracking errors for the
state variables of the mobile robot associated with
position and orientation and 𝑒𝑗 𝑗 = 4,⋯ , 6 are the
tracking errors for the state variables of the mobile
robot associated with linear and angular velocities.
Equivalently, the ϐirst‐order time‐derivative of the
Lyapunov function is written as

�̇� = −[∑3
𝑖=1𝑘1,𝑖𝑒2𝑖 + ∑6

𝑗=4𝑘2,𝑗𝑒2𝑗 ] (65)

where 𝑘1,𝑖 > 0 𝑖 = 1,⋯ , 3 are the diagonal elements
of gain matrix 𝐾1 and 𝑘2,𝑗 > 0 𝑗 = 4,⋯ , 6 are the
diagonal elements of gain matrix 𝐾2. By denoting the
minimumof the above‐noted elements of the feedback
gain matrices as 𝑘𝑚𝑖𝑛 , that is

𝑘𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑘1,𝑖 ∶ 𝑖 = 1,⋯ , 3 and 𝑘2,𝑗 ∶ 𝑗 = 4,⋯ , 6}
(66)

and using Eq. (65) one obtains that

�̇�≤ − 𝑘𝑚𝑖𝑛[∑
4
𝑖=1𝑒2𝑖 + ∑6

𝑗=4𝑒2𝑗 ]
⇒�̇�≤ − 2𝑘𝑚𝑖𝑛𝑉⇒�̇� + 2𝑘𝑚𝑖𝑛𝑉≤0

(67)

From Eq. (67) one can demonstrate the exponen‐
tial convergence of the Lyapunov function 𝑉 to 0.

Finally, a diagram with the implementation stages
ofmulti‐loop ϐlatness‐based controlmethod is given in
Figure 3.

Once the state‐space model of the system has
been separated into chained subsystems which indi‐
vidually satisfy the differential ϐlatness property,
ϐlatness‐based control is implemented at each time‐
step through the following steps: (i) the state vector
of the subsequent (𝑖 + 1)‐th subsystem becomes vir‐
tual control input to the preceding 𝑖‐th subsystem, (ii)
Equivalently, the virtual control input of the preceding
𝑖‐th subsystem becomes setpoint for the subsequent
(𝑖 + 1)‐th subsystem, (iii) the value of the virtual con‐
trol input for each subsystem is computed by inverting
the dynamics of this subsystem and by selecting feed‐
back gains which allow for eliminating the associated
local tracking error, (iv) the real control input is com‐
puted from the last subsystem by inverting again the
dynamics of this subsystem (v) the real control input
makes implicitly use of the virtual control inputs of
all preceding subsystems. Its stabilizing effects appear
by tracing the subsystems of the state‐space model
backwards from the last to the ϐirst one.

5. Simulation Tests
5.1. Results on Nonlinear Optimal Control for the 3‐DOF

Omnidirectional Robot

The proposed nonlinear optimal control method
for the3‐wheel omnidirectionalmobile robothasbeen
tested and its performance has been further con‐
ϐirmed through simulation tests. To implement the
nonlinear optimal control method the algebraic Ric‐
cati equation of Eq. (39) had to be repetitively solved
at each time‐step of the control algorithm,with the use
of Matlab’s function aresolv(). The Jacobian matrices
of the system were also updated at each sampling
instance. Indicative values about the parameters of the
mobile robot were as follows: 𝑛 = 0.5, 𝑟 = 0.1𝑚,
𝑚 = 10𝑘𝑔, 𝐼𝑜 = 0.05𝑘𝑔⋅𝑚2, 𝑘𝑡 = 0.01, 𝑘𝑏 = 0.01,
𝐼𝑣 = 4𝑘𝑔⋅𝑚2, 𝐿𝑜 = 0.5𝑚, 𝑏𝑜 = 0.01, 𝑅𝑎 = 0.1Ω, 𝑑1 =
0.02, 𝑑2 = 0.02, 𝑑3 = 0.02. The obtained results are
depicted in Figure 4 to Figure 19. The measurement
units for the cartesian coordinates of the robotic vehi‐
cle were inmeters (m) and for its rotation angleswere
in radians (rad). The measurement units for linear
velocity variables were m/sec while angular velocity
variables were measured in rad/sec. The real values
of the state variables of the 3‐wheel omnidirectional
mobile robot are depicted in blue, their estimated
values which have been provided by the H‐inϐinity
KalmanFilter are plotted in greenwhile the associated
reference setpoints are printed in red. The simula‐
tion results have shown that the nonlinear optimal
control scheme achieves fast and accurate tracking
of setpoints under moderate variations of the control
inputs. The obtained results contain 2D diagrams are
given about the tracking of reference trajectories by
the center‐of‐gravity of the robotic vehicle.
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Figure 3. Diagram with the implementation stages of multi‐loop flatness‐based control of the three‐wheel
omnidirectional mobile robot [Source: Authors’ own work]
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Figure 4. Nonlinear optimal control ‐ Tracking of setpoint 1 for the 3‐wheel omnidirectional mobile robot (a) convergence
of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line: estimated
value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real value,
green line: estimated value) [Source: Authors’ own work]

The transient performance of the control method
depends mainly of gains 𝑟, 𝜌 and on gain matrix 𝑄
which appear in the Riccati equation of Eq. (39). Actu‐
ally, by assigning small values to 𝑟 one can achieve
elimination of the state vector’s tracking error, while
by assigning relatively large values to the diagonal
elements ofmatrix𝑄 one can achieve fast convergence
of state variables to setpoints. Moreover, the smallest
value of 𝜌 for which one can obtain a valid solution
for the above‐noted Riccati equation (in the form of
positive‐deϐinite and symmetric matrix 𝑃) is the one

that provides the control loop with maximum robust‐
ness. The nonlinear optimal control method results
into minimization of energy dispersion by the actua‐
tors of the 3‐wheel omnidirectionalmobile robot, thus
increasing the autonomy and operational capacity of
the autonomous vehicle. The method exhibits global
(andnot local) stability properties as it is conϐirmedby
its ability to track time‐varying and abruptly changing
setpoints.
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Figure 5. Nonlinear optimal control ‐ Tracking of setpoint 1 for the 3‐wheel omnidirectional mobile robot (a) variations of
the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile robot in the 2D
xy plane [Source: Authors’ own work]
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Figure 6. Nonlinear optimal control ‐ Tracking of setpoint 2 for the 3‐wheel omnidirectional mobile robot (a) convergence
of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line: estimated
value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real value,
green line: estimated value) [Source: Authors’ own work]
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Figure 7. Nonlinear optimal control ‐ Tracking of setpoint 2 for the 3‐wheel omnidirectional mobile robot (a) variations of
the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile robot in the 2D
xy plane [Source: Authors’ own work]
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Figure 8. Nonlinear optimal control ‐ Tracking of setpoint 3 for the 3‐wheel omnidirectional mobile robot (a) convergence
of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line: estimated
value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real value,
green line: estimated value) [Source: Authors’ own work]
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Figure 9. Nonlinear optimal control ‐ Tracking of setpoint 3 for the 3‐wheel omnidirectional mobile robot (a) variations of
the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile robot in the 2D
xy plane [Source: Authors’ own work]
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Figure 10. Nonlinear optimal control ‐ Tracking of setpoint 4 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 11. Nonlinear optimal control ‐ Tracking of setpoint 4 for the 3‐wheel omnidirectional mobile robot (a) variations
of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile robot in the
2D xy plane [Source: Authors’ own work]
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Figure 12. Nonlinear optimal control ‐ Tracking of setpoint 5 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 13. Nonlinear optimal control ‐ Tracking of setpoint 5 for the 3‐wheel omnidirectional mobile robot (a) variations
of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile robot in the
2D xy plane [Source: Authors’ own work]
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Figure 14. Nonlinear optimal control ‐ Tracking of setpoint 6 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 15. Nonlinear optimal control ‐ Tracking of setpoint 6 for the 3‐wheel omnidirectional mobile robot (a) variations
of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile robot in the
2D xy plane [Source: Authors’ own work]
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Figure 16. Nonlinear optimal control ‐ Tracking of setpoint 7 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 17. Nonlinear optimal control ‐ Tracking of setpoint 7 for the 3‐wheel omnidirectional mobile robot (a) variations
of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile robot in the
2D xy plane [Source: Authors’ own work]
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Figure 18. Nonlinear optimal control ‐ Tracking of setpoint 8 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 19. Nonlinear optimal control ‐ Tracking of setpoint 8 for the 3‐wheel omnidirectional mobile robot (a) variations
of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile robot in the
2D xy plane [Source: Authors’ own work]
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Figure 20.Multi‐loop flatness‐based control ‐ Tracking of setpoint 1 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 21.Multi‐loop flatness‐based control ‐ Tracking of setpoint 1 for the 3‐wheel omnidirectional mobile robot (a)
variations of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile
robot in the 2D xy plane [Source: Authors’ own work]
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Figure 22.Multi‐loop flatness‐based control ‐ Tracking of setpoint 2 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 23.Multi‐loop flatness‐based control ‐ Tracking of setpoint 2 for the 3‐wheel omnidirectional mobile robot (a)
variations of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile
robot in the 2D xy plane [Source: Authors’ own work]
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Figure 24.Multi‐loop flatness‐based control ‐ Tracking of setpoint 3 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 25.Multi‐loop flatness‐based control ‐ Tracking of setpoint 3 for the 3‐wheel omnidirectional mobile robot (a)
variations of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile
robot in the 2D xy plane [Source: Authors’ own work]
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Figure 26.Multi‐loop flatness‐based control ‐ Tracking of setpoint 4 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 27.Multi‐loop flatness‐based control ‐ Tracking of setpoint 4 for the 3‐wheel omnidirectional mobile robot (a)
variations of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile
robot in the 2D xy plane [Source: Authors’ own work]
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Figure 28.Multi‐loop flatness‐based control ‐ Tracking of setpoint 5 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 29.Multi‐loop flatness‐based control ‐ Tracking of setpoint 5 for the 3‐wheel omnidirectional mobile robot (a)
variations of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile
robot in the 2D xy plane [Source: Authors’ own work]
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Figure 30.Multi‐loop flatness‐based control ‐ Tracking of setpoint 6 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 31.Multi‐loop flatness‐based control ‐ Tracking of setpoint 6 for the 3‐wheel omnidirectional mobile robot (a)
variations of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile
robot in the 2D xy plane [Source: Authors’ own work]
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Figure 32.Multi‐loop flatness‐based control ‐ Tracking of setpoint 7 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 33.Multi‐loop flatness‐based control ‐ Tracking of setpoint 7 for the 3‐wheel omnidirectional mobile robot (a)
variations of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile
robot in the 2D xy plane [Source: Authors’ own work]
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Figure 34.Multi‐loop flatness‐based control ‐ Tracking of setpoint 8 for the 3‐wheel omnidirectional mobile robot (a)
convergence of state variables 𝑥1 to 𝑥3 to their reference setpoints (red line: setpoint, blue line: real value, green line:
estimated value), (b) convergence of state variables 𝑥4 to 𝑥6 to their reference setpoints (red line: setpoint, blue line: real
value, green line: estimated value) [Source: Authors’ own work]
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Figure 35.Multi‐loop flatness‐based control ‐ Tracking of setpoint 8 for the 3‐wheel omnidirectional mobile robot (a)
variations of the control inputs 𝑢1 to 𝑢3 (b) tracking of the reference trajectory by the center of gravity of the mobile
robot in the 2D xy plane [Source: Gerasimos own work]

5.2. Results on Multi‐loop Flatness‐based Control for
the 3‐DOF Omnidirectional Robot

Results about the tracking accuracy and the speed
of convergence to setpoints of the ϐlatness‐based con‐
trol method in successive‐loops, in the case of the
3‐wheel omnidirectional mobile robot, are shown in
Figure 20 to Figure 35. Themeasurement units for the
cartesian coordinates of the robotic vehicle were in
meters (m) and for its orientation angle were in radi‐
ans (rad). The measurement units for linear velocity
variables were m/sec while angular velocity variables
were measured in rad/sec.

The real values of the state variables of the
autonomous robotic vehicle are depicted in blue, their
estimated values which have been provided by the
H‐inϐinity Kalman Filter are plotted in green while
the associated reference setpoints are printed in red.
The simulation results have shown that ϐlatness‐based
control in successive loops achieves precise tracking
of setpoints under moderate variations of the con‐
trol inputs. Once again, 2D diagrams are given about
the tracking of reference trajectories by the center‐of‐
gravity of the mobile robot.

It can be noticed again, that under this control
scheme one achieves fast and precise tracking of ref‐
erence setpoints for all state variables of the dynamic
model of the 3‐wheel omnidirectional mobile robot
without changes of state variables and without state
space‐model transformations. It is noteworthy, that
through the stages of this method one solves also the
setpoints deϐinition problem for all state variables of
the autonomous robotic vehicle. Actually, the selection
of setpoints for the state variables of the ϐirst subsys‐
tem in the chained state‐space form is unconstrained.

On the other side by taking the state variables of
the subsequent subsystem to be virtual control inputs
for the preceding subsystem one can ϐind also the
setpoints of the subsequent subsystem (the state vari‐
ables of the subsequent subsystem should converge to
the virtual control input that stabilizes its preceding
subsystem). The speed of convergence of the state
variables of the dynamic model of the robotic vehicle
under ϐlatness‐based control implemented in succes‐
sive loops is determined by the selection of values for
the diagonal gain matrices 𝐾1, 𝐾2.

6. Conclusion
The aim of the present article has been to develop

novel nonlinear control methods for the dynamic
model of the 3‐wheel omnidirectional mobile robot
which do not need changes of state variables or com‐
plicated state‐space model transformations. To this
end the following two control methods have been
developed and tested (i) nonlinear optimal control,
(ii) ϐlatness‐based control in successive loops. In the
nonlinear optimal control method the dynamic model
of the omnidirectional mobile robot has undergone
ϐirst approximate linearization with the use of ϐirst‐
order Taylor series expansion and through the com‐
putation of the associated Jacobian matrices. This
linearization process was taking place at each sam‐
pling instant around a time‐varying operating point
which was deϐined by the present value of the sys‐
tem’s state vector and by the last sampled value of
the control inputs vector. For the linearized model of
the mobile robot an H‐inϐinity feedback controller has
been designed. The H‐inϐinity control method signi‐
ϐies a min‐max differential game between the control
and the disturbance inputs and achieves solution of
the associated optimal control problem under model
uncertainty and exogenous perturbations.
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To compute the gains of the H‐inϐinity controller
an algebraic Riccati equation had to be repetitively
solved at each sampling period. The global stability
properties of the nonlinear optimal control method
have been proven through Lyapunov analysis.

In the multi‐loop ϐlatness‐based control method,
the dynamic model of the 3‐wheel omnidirectional
mobile robot was separated into subsystems con‐
nected in chained form. The state vector of the subse‐
quent (i+1‐th) subsystem was a virtual control input
for the preceding (i‐th) subsystem. Moreover, the vir‐
tual control input for the preceding (i‐th) subsystem
was the setpoint for the subsequent (i+1‐th) subsys‐
tem. It was proven that all subsystems in this chained
state‐space structure were differentially ϐlat. Thus it
was conϐirmed that they were input‐output lineariz‐
able and that a stabilizing ϐlatness‐based controller
could be designed for each one of them by inverting
their dynamics, as it is commonly done for input‐
output linearized systems. The real control inputs
of the omnidirectional mobile robot were computed
from the last subsystem in this chained state‐space
structure. In this computation the virtual control
inputs of the preceding subsystems had to be traced
backwards, from the last to the ϐirst subsystem, within
each sampling period. The global stability properties
of the multi‐loop ϐlatness‐based control scheme were
also proven through Lyapunov analysis.
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