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Abstract:
The design method and the time‐variant finite impulse
response (FIR) architecture for real‐time estimation of
fractional and integer differentials and integrals are pre‐
sented in this paper. The proposed FIR architecture is
divided into two parts. Small‐phase filtering, integer dif‐
ferentiation, and fractional differential and integration
on the local data are performed by the first part, which
is time‐invariant. The second part, which is time‐variant,
handles fractional and global differentiation and integra‐
tion. The separation of the two parts is necessary because
real‐timematrix inversion or an extensive analytical solu‐
tion, which can be computationally intensive for high‐
order FIR architectures, would be required by a single
time‐variant FIR architecture. However, matrix inversion
is used in the design method to achieve negligible delay
in the filtered, differentiated, and integrated signals.
The optimum output obtained by the method of least
squares results in the negligible delay. The experimental
results show that fractional and integer differentiation
and integration can be performed by the proposed solu‐
tion, although the fractional differentiation and integra‐
tion process is sensitive to the noise and limited res‐
olution of the measurements. In systems that require
closed‐loop control, disturbance observation, and real‐
time identification ofmodel parameters, this solution can
be implemented.

Keywords: fractional differentiation, fractional integra‐
tion, FIR filter, digital filter synthesis

1. Introduction
The fractional‐order calculus has a widespread

potential for application. Currently, this complex
mathematical operator beneϐits the modelling of bio‐
logical, chemical, control, electrical, and even ϐinancial
systems [1–23]. However, the practical implementa‐
tion of the fractional‐order calculus is extremely difϐi‐
cult due to the lack of real components that can realize
this mathematical operation [5, 24–28]. In the case
of the integer differentiation and integration, passive
electrical components such as capacitors and coils can
carry out these operations on the analogue signal [29].
Moreover, the digital representation of the real‐time
integer‐order calculus is also trivial and addressed by
existing solutions and scientiϐic papers [4,5,30–33].

However, there are no robust passive components
capable of realizing the generalized arbitrary order of
the fractional calculus, which allows for more accurate
and real‐time control, modelling, and simulation of the
real systems [4,5].

The literature [4,5], presents three common math‐
ematical deϐinitions of the arbitrary‐order deriva‐
tive and integral proposed by Riemann–Liouville,
Grünwald–Letnikov, and Caputo [1–5]. These math‐
ematical deϐinitions can be implemented by using
the time‐domain [4, 5, 34–36], and frequency‐domain
design methods [4, 5]. One of the frequency‐domain
design methods is Oustaloup’s approximation, which
is based on a recursive distribution of zeros and
poles into a frequency interval [37]. This method
was reϐined to achieve a better ϐit in the frequency
response in [38]. Another design method is based
on Charef’s approximation, which has two versions.
The ϐirst version approximates a function of sin‐
gularities of poles and zeros within a limited fre‐
quency bandwidth with respect to a deϐined approx‐
imation error [39], while the second version extends
the Charef method by including additional arbitrary
poles [39]. The next design method is Carlson’s
approximation method [40], which is based on the
Newton iterative root‐ϐinding algorithm. Moreover,
there are noniterative design methods, such as Mat‐
suda’s approximation, where a set of logarithmically
spaced frequencies is used to approximate the ideal
fractional‐order function [41]; and the continued frac‐
tion expansion approximation, which is also used for
evaluation of the fractional‐order functions because it
converges faster than power series expansions [42].
Matsuda’s approximation method was also reϐined in
[43, 44], by applying the Sanathanan–Koerner least‐
squares method [45]. A further reϐinement of Mat‐
suda’s method is the modiϐied stability boundary
locus ϐitting approximation [27, 46], which is based
on an additional closed‐loop system composed by a
proportional‐integral controller.

More frequency‐domain approximation methods
can be found in the literature, such as the Fourier
series and inverse Fourier transform method [34],
vector ϐitting method [47], Abdelbaki’s method [48],
Maione’s approximation [49], and Thiele’s approxima‐
tion [50]. In all these cases, however, the ideal transfer
function of a fractional differentiator or integrator is
approximated by an integer‐order rational transition
function through the pole‐zero pairs.
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Therefore, the integer‐order rational transition
function can be synthesized with passive analogue
components or implemented into a digital real‐time
system. Nevertheless, the approximation can be valid
only for a limited number of fractional orders and the
difference between the responses of the ideal transfer
function and its approximation is unknown [4,5]. Fur‐
thermore, all the frequency‐domain design methods
provide only approximation in a limited frequency
bandwidth, thus, they give less importance to the parts
of the frequency response in the borders and outside
of this bandwidth. Hence, in the low‐pass ϐilter design
case, this results in poor approximation in the pass‐
band frequency and poor attenuation for the stopband
frequency, and/or ampliϐication in the stopband fre‐
quency spectrum [4,5].

The frequency‐domain design methods can be
adapted to digital architectures, such as the inϐi‐
nite impulse response (IIR) and the ϐinite impulse
response (FIR) ϐilters [5, 51]. To adapt continuous
transfer functions to their discrete equivalents, two
types of discretization methods can be used [52–
58], the direct [53, 54] and the indirect discretiza‐
tion [59, 60]. Moreover, there are methods that were
introduced to design both the integer differentiators
and integrators [61–69]. In the case of integer‐order
design methods, the transfer function of a digital inte‐
grator (based on the rectangular rule) can be inverted
and stabilized to obtain the IIR differentiator [61]. A
similar design approach was presented in [62, 63],
where the integrator is obtained by combining both
the rectangular and trapezoidal techniques. In this
case, the differentiator is also obtained by invert‐
ing and stabilizing the integrator transfer function.
An alternative design method was presented in [64],
where the digital integrator is designed with respect
to the Simpson integration rule, and the differentiator
is obtained again by inverting the integrator trans‐
fer function. Another design method is based on the
closed‐form Newton‐Cotes integration formula [68],
where the third‐order digital trapezoidal integrator
is obtained and inverted to form the differentiator.
Another solution was proposed in [70], where the
adaptation of the method of least squares was used
to design the integer FIR differentiator. Furthermore,
alternative methods are the Adomian decomposition
method [71], the Chebyshev collocation method [72,
73], and the predictor–corrector approach based on
the Adams–Bashforth–Moulton method [74–76]. Nev‐
ertheless, these three methods are not robust enough
to be implemented in a real‐time system, and are
therefore limited to numerical simulations only [4,5].

The direct and indirect discretization methods
lead to a discrete transfer function, which has the
same drawbacks as the transfer function designed
with respect to the frequency‐domain design meth‐
ods. Hence, only the FIR and IIR integer differentiators
and integrators can estimate their output with respect
to the close‐to‐ideal magnitude response. However,
only one solution allows designing the integer FIR
differentiator that is characterized by a negligible

phase shift in the passband frequency and signiϐicant
attenuation in the stopband frequency spectrum [70].
Other solutions [61–69] are characterized by linear or
nonlinear phase responses, which lead to a time delay
in the differentiated and integrated signals or impre‐
cise response with respect to (periodic) signals with
varying frequency. This, in turn, limits their applica‐
tions in closed‐loop control and real‐time estimation
and recovery of the state variables in, e.g., disturbance
observer design [77–85].

In this paper, the time‐variant FIR architecture and
its design method for real‐time local and global frac‐
tional and integer differentiation and integration are
presented. The proposed FIR architecture is divided
into two parts. Small delay (small‐phase shift) ϐilter‐
ing, integer differentiation, and potentially local frac‐
tional differentiation and integration are performed
by the ϐirst part, which is time‐invariant. This part
is based on the previously introduced FIR ϐilter and
integer differentiator architectures presented in [70],
and is also extended to the fractional‐order calculus
in this paper. Fractional (global) differentiation and
integration are performed by the second part, which
is time‐variant. The separation of the two parts is nec‐
essary because real‐time matrix inversion or exten‐
sive analytical solutions, which can be computation‐
ally demanding for high‐order FIR architectures, are
required by the time‐variant FIR architecture. More‐
over, matrix inversion is used in the design method to
ensure small delay introduced into the ϐiltered, differ‐
entiated, and integrated signals by both parts of the
FIR architectures. The optimum output obtained by
the method of least squares results in the negligible
phase shift introduced by the FIR architecture.

This paper is organized as follows: Section 2
describes the problems regarding the implementation
of the fractional differentiators and integrators; Sec‐
tion 3 introduces the time‐variant FIR architecture
and its design method; Section 4 discusses the exper‐
imental results; and Section 5 concludes the paper.

2. Problem Statement
The fractional derivative (integral) [1–5,51] of the

power function 𝑓(𝑡) = 𝑡𝑝 is given by:

𝐷𝑣𝑡𝑝 = Γ(𝑝 + 1)
Γ(𝑝 − 𝑣 + 1)𝑡

𝑝−𝑣 , (1)

where the integer order 𝑞 of the integer derivative
(integral) is generalized to an arbitrary order 𝑣 by
replacing𝑝! and (𝑝−𝑞)!with gamma functionsΓ(𝑝+1)
and Γ(𝑝 − 𝑣 + 1), respectively. If 𝑝 − 𝑣 + 1 > 0, the
gamma functionΓ(𝑝−𝑣+1) [1–5,51] can be computed
as follows:

Γ(𝑝 − 𝑣 + 1) = න
∞

0
𝑥𝑝−𝑣𝑒−𝑥𝑑𝑥. (2)
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Furthermore, if 𝑝−𝑣+1 ≤ 0, the gamma function
Γ(−𝑥) can be computed by using the reϐlection prop‐
erty of the gamma function as follows:

Γ(−𝑥) = −𝜋csc(𝜋𝑥)
Γ(𝑥 + 1) . (3)

Based on (1) with respect to (2) and (3), the frac‐
tional derivative (integral) of a given function 𝑓(𝑡)
transformed into a polynomial of 𝑡 by using Taylor
series expansion is given by:

𝐷𝑣𝑓(𝑡) =
∞


𝑝=0

𝑎𝑝
Γ(𝑝 + 1)

Γ(𝑝 − 𝑣 + 1)𝑡
𝑝−𝑣 , (4)

where 𝑎𝑝 is the 𝑝𝑡ℎ coefϐicient of the given polynomial.
The problem in this case is that the transfer function of
the FIR architecture (ϐilter, differentiator, or integra‐
tor) described by:

𝐻(𝑧) =
𝑁


𝑘=0

ℎ(𝑘)𝑧−𝑘 , (5)

where 𝑧 is the 𝑧‐transform and 𝑁 is the order of
the FIR architecture, must calculate the combined dif‐
ferentiated and integrated output. Unfortunately, the
FIR architecture does not store and use data out‐
side the limited data set (local samples of the mod‐
iϐied signal) used to calculate the output of that FIR
architecture. Therefore, the FIR architecture does not
include time base, and it cannot estimate both the
global integer integrals and the fractional order differ‐
entials/integrals.

3. Time‐variant FIR Architecture and Its Design
The proposed time‐variant FIR architecture,

designed according to the proposed design method,
consists of two separate parts. Both parts are shown
in Figure 1.

The ϐirst and second parts of the FIR architecture
are designed separately. The ϐirst part performs ϐil‐
tering, integer and local fractional differentiation and
integration. When the ϐirst part is designed as a low‐
pass FIR ϐilter, the second part can act as both an
integer‐ and fractional‐order differentiator and inte‐
grator.

Both FIR architectures consist of delay lines built
from unitary delays 𝑧−1, which create 𝑁𝑓 consecutive
delayed signals from the input signal 𝑥[𝑛]. The ϐirst
architecture consists of gains 𝑊𝑓(𝑁𝑓) and the sum
blocks Σ. The second FIR architecture uses a multi‐
plexer (MUX) to obtain𝑁𝑚 signals from the delay line.
These signals are multiplied by matrices 𝑊𝑚(𝑡) and
𝐿𝑚(𝑡) to obtain the resulting output 𝑦[𝑛].

The ϐirst part is designed according to the algo‐
rithm presented in [70], which was developed to
design small‐phase FIR ϐilters and integer‐order dif‐
ferentiators. However, in this work, two modiϐications
to the time sample vector of the FIR architecture 𝑌𝑓
are introduced. The time sample vector is described
as follows:
𝑌𝑓 = [1−𝑑, 1+Δ𝑡−𝑑,… , 1+(𝑁𝑓−1)Δ𝑡−𝑑,𝑁𝑓Δ𝑡−𝑑]𝑇 ,

(6)
where𝑁𝑓 ∈ ℕ is the order of the ϐirst FIR architecture
and 𝑇 stands for transpose operator.

The ϐirst modiϐication introduces the sampling
periodΔ𝑡 in (6). This modiϐication eliminates the need
for the gain scaling factor (−1/Δ𝑡)𝑣𝑓 , where 𝑣𝑓 is the
order of fractional derivative/integral. The scaling fac‐
tor was required in [70] to adjust the gain of the FIR
differentiator with respect to the sampling rate. In (6),
the scaling factor is eliminated because it becomes a
complex number for fractional differentials and inte‐
grals.

The second modiϐication allows designing a time
delay 𝑑 introduced by the ϐirst FIR architecture. The
purpose of designing the time delay is to increase
the attenuation of the stopband frequency. The FIR
ϐilter and integer differentiator designed with respect
to [70] minimizes the phase shift and attenuation of
the stopband frequency by estimating the output of
the FIR architecture, which is optimal with respect to
the method of least squares. The introduction of the
time delay allows the output of the FIR architecture to
be calculated with respect to the samples surrounding
the ϐiltered sample of the signal instead of ϐiltering that
sample based on only the past samples [70].

The time sample vector (6) is used to create the
following matrix:

𝑋𝑓 = [𝑌0𝑓 , 𝑌1𝑓 , … , 𝑌𝑝𝑓−1𝑓 , 𝑌𝑝𝑓𝑓 ], (7)
where𝑝𝑓 ∈ ℕ corresponds to the order of a theoretical
polynomial ϐitted by the FIR architecture. The weights
of this FIR architecture are calculated as follows:

𝑊𝑓 = 𝐿𝑓((𝑋𝑇𝑓 𝑋𝑓)
−1𝑋𝑓), (8)

Figure 1. FIR architecture for real‐time integer‐ and fractional‐order differentiation and integration
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where

𝐿𝑓 = ቈ Γ(1)
Γ(1 − 𝑣𝑓)

, Γ(2)
Γ(2 − 𝑣𝑓)

, … ,

Γ(𝑝𝑓)
Γ(𝑝𝑓 − 𝑣𝑓)

,
Γ(𝑝𝑓 + 1)

Γ(𝑝𝑓 − 𝑣𝑓 + 1), (9)

where𝐿𝑓 is the vector of weights transforming the left‐
sided Moore–Penrose generalized inverse solution in
(8) to the FIR architecture weights 𝑊𝑓(𝑁𝑓). The 𝐿𝑓
vector is generalized to an arbitrary order of the ϐit‐
ted polynomial 𝑝𝑓 , and fractional‐order of the deriva‐
tive/integral 𝑣𝑓 in the gamma function Γ(𝑝𝑓 , 𝑣𝑓).

The ϐirst FIR architecture can be used to ϐilter,
differentiate, and integrate the signal 𝑥[𝑛]. However,
the output 𝑦[𝑛]will correspond only to the local (frac‐
tional) differentials and integrals at the point with
respect to the time sample vector (6). To solve this
problem, the additional time‐variant FIR architecture
was introduced.

In the second FIR architecture, all the parameters
are time‐dependent. Therefore, the time sample vec‐
tor𝑌𝑚(𝑡) of the second FIR architecture includes time‐
base 𝑡, and is described as follows:

𝑌𝑚(𝑡) = [𝑡, 𝑡 − Δ𝑡, 𝑡 − 2Δ𝑡, … , 𝑡 − (𝑁𝑚 − 2)Δ𝑡,
𝑡 − (𝑁𝑚 − 1)Δ𝑡]𝑇 , (10)

where 𝑁𝑚 ∈ ℕ corresponds to the order of a theo‐
retical polynomial, ϐitted again by the time‐variant FIR
architecture. In (10) there is no need to introduce the
delay because ϐiltering is left to the ϐirst FIR architec‐
ture. Based on (10), the time‐dependent matrix 𝑋𝑚(𝑡)
is described as follows:

𝑋𝑚(𝑡) = [𝑌0𝑚(𝑡), 𝑌1𝑚(𝑡), … , 𝑌𝑝𝑚−1
𝑚 (𝑡), 𝑌𝑝𝑚𝑚 (𝑡)], (11)

where 𝑝𝑚 ∈ ℕ corresponds to the order of the ϐitted
polynomial in the second FIR architecture. Then, (11)
is used to obtain the weights of the second FIR archi‐
tecture as follows:

𝑊𝑚(𝑡) = 𝐿𝑚(𝑡)((𝑋𝑇𝑚(𝑡)𝑋𝑚(𝑡))
−1𝑋𝑚(𝑡)), (12)

where

𝐿𝑚(𝑡) = ቈ Γ(1)
Γ(1 − 𝑣𝑚)

𝑡−𝑣𝑚 , Γ(2)
Γ(2 − 𝑣𝑚)

𝑡1−𝑣𝑚 , … ,

Γ(𝑝𝑚)
Γ(𝑝𝑚 − 𝑣𝑚)

𝑡𝑝𝑚−1−𝑣𝑚 ,

Γ(𝑝𝑚 + 1)
Γ(𝑝𝑚 − 𝑣𝑚 + 1)𝑡

𝑝𝑚−𝑣𝑚, (13)

where 𝐿𝑚(𝑡) is again the time‐dependent vector of
weights transforming the left‐sided Moore–Penrose
generalized inverse solution in (12) to the FIR dif‐
ferentiator and integrator weights 𝑊𝑚(𝑡). The 𝐿𝑚(𝑡)
vector is also generalized to an arbitrary order ϐitted
polynomial 𝑝𝑚 , and fractional‐order of the derivative
and integral 𝑣𝑚 in the gamma function Γ(𝑝𝑚 , 𝑣𝑚). Fur‐
thermore, (8) includes the time base which is deϐined
as the power functions 𝑡(𝑝𝑚−𝑣𝑚).

The entire FIR architecture (Fig. 1) was divided
into two parts because a single time‐variant FIR archi‐
tecture designed according to (10)–(13) requires real‐
time matrix inversion or an analytical solution of (12).
In this case, matrix inversion of (12) can be com‐
putationally intensive, especially, for high‐order FIR
architectures.

Therefore, the entire FIR architecture structure
was divided into the time‐invariant and time‐variant
parts, where in the case of the time‐variant part, the
order of FIR structure can be as low as possible (𝑁𝑓 >
𝑝𝑓) and (𝑁𝑚 > 𝑝𝑚), because the ϐiltering process
is left to the ϐirst part. Furthermore, 𝑊𝑚(𝑡) consists
of only 𝑁2

𝑚 parameters, thus, the differentiation and
integration order can be updated in real‐time without
the need to recalculate the parameters of the entire
FIR architecture.

There are two main limitations of the proposed
solution. The ϐirst limitation comes from the abil‐
ity to approximate input signal 𝑥[𝑛] by the time‐
variant FIR architecture. If the order of the polyno‐
mial 𝑝𝑚 is lower than the theoretical order of the
polynomial approximating input signal 𝑥[𝑛], the error
between output 𝑦[𝑛] and theoretical integer inte‐
gral and fractional‐derivatives and fractional‐integrals
approximating 𝑥[𝑛] will increase as the difference
increases between orders of polynomials. Moreover,
analytical solution of (12) leads to mathematical
expressions such as 𝑡(𝑝𝑚)+Δ𝑡(𝑝𝑚). In this case, if 𝑡 ≫
Δ𝑡, numerical errors will appear after numerical accu‐
racy is reached during calculation of 𝑡(𝑝𝑚) + Δ𝑡(𝑝𝑚).
Furthermore, differentiator or integrator designed
according to proposed method will estimate its output
with respect to zero initial conditions. Nevertheless,
despite these limitations, there are systems oriented
on closed‐loop control, disturbance observations and
real‐time identiϐication of model parameters, where
proposed solution can be implemented.

4. Experimental Evaluation

In the experiments, there were three signals from
three different systems considered. The ϐirst sys‐
tem was the linear actuator DSZY1‐24‐05‐A‐050‐IP65
and its voltage input signal. The second system was
the incremental linear encoder L18‐F10‐0120‐05‐0‐
CP03/W with the displacement feedback. The third
system was the KUKA iiwa R820 manipulator with the
angular position feedback from its encoders.

The ϐirst signal was the analogue signal mea‐
sured in volts, which was characterized by the noise
described by the normal distribution𝑁(0, 0.001). The
second signal was the displacement signal measured
in mm, where the minimum incremental motion is 1.0
𝜇m (accuracy grade at 1.0 m: 3.0 𝜇m). The third signal
corresponded to the angular position of a joint of the
manipulator measured in degrees, where the mini‐
mum incremental motion was 3.0–4.0 𝜇deg. Unfor‐
tunately, demonstrations of the ϐiltering, fractional‐
order differentiation and integration based on the ran‐
dom signals (obtained from the described systems)
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would be difϐicult due to the unknown fractional dif‐
ferentials and integrals of these signals. Therefore, the
same signals (functions 𝑓(𝑡)) were used as the base
for the experimental evaluation, where the quality of
each signal was described by noise and the observable
minimum incremental motion characterizing each of
the discussed systems.

Moreover, there were two types of tests conducted.
In the ϐirst test, the ability to ϐilter, differentiate and
integrate based only on the local data was investi‐
gated. Then, in the second group of the tests, the
ability of ϐiltering, integer‐ and fractional‐order dif‐
ferentiation, and integration with respect to the time
base (globally), was evaluated. Frequency responses
were not considered because the local (fractional) FIR
differentiator/integrator frequency responses do not
correspond to their equivalent theoretical responses.
Furthermore, the time‐variant FIR architecture elim‐
inates the possibility of its analysis in the frequency
domain.

In the ϐirst test, function 𝑓(𝑡) = 𝑡2 was used.
This function was affected by the noise described by
the distribution 𝑁(0, 0.1). In this case, the noise was
signiϐicantly (one hundred times) higher than in the
ϐirst system. The sampling frequency of the test sig‐
nal was 16384 Hz, while parameters of the ϐirst FIR
architecture were 𝑑 = 0, 𝑁𝑓 = 16384, and 𝑝𝑓 = 2.
Hence, the FIR architecture estimated its output based
on samples up to 1 s from the past. The results are
presented in Figure 2.

In the ϐirst group of tests (Fig. 2), ϐive different
ϐiltering (Fig. 2a), integer‐ (Fig. 2b) and fractional‐
order (Fig. 2c) differentiation, and fractional‐ (Fig. 2d)
and integer‐order (Fig. 2e) integration examples are
presented. In all the cases, the output of the FIR archi‐
tecture is in close range (based on visual inspection)
to its corresponding theoretical function (its local dif‐
ferential and integral). However, the function 𝑓(𝑡)was
not ϐitted to the data 𝑓(𝑡)+𝑁(0, 0.1). Therefore, there
is a noticeable difference between the outputs of the
FIR architectures, and the function 𝑓(𝑡) and the cor‐
responding theoretical differentials/ integrals. In this
case, the recovery of the original signal 𝑓(𝑡) is a more
demanding process than a local ϐit of this function
with respect to the least squares‐based regression.
However, the output from the FIR ϐilter (Fig. 2a) was
0.060% different from the output from the original
signal f(t). In the case of the integer (𝑣 = 1, Fig. 2b)
and the fractional (𝑣 = 1/2, Fig. 2c) differentiation,
the differences between the responses from the FIR
architecture and the corresponding theoretical differ‐
ential 𝑑𝑣𝑓(𝑡)

𝑑𝑡𝑣 were 0.001% and 0.011%, respectively.
In the case of the fractional (𝑣 = −1/2, Fig. 2d) and
the integer (𝑣 = −1, Fig. 2e) integral, the differences
between the responses from the FIR architecture and
the corresponding integral values were 0.147% and
0.273%, respectively.

(a)

Figure 2. Comparison of different FIR architecture
outputs during local differentiation and integration: (a)
reference signal with and without noise compared to
the FIR filter output; (b) ideal integer differential for
𝑣 = 1 compared to the FIR differentiator output 𝑣𝑓 = 1;
(c) ideal fractional differential for 𝑣 = 1/2 compared to
the FIR differentiator output 𝑣𝑓 = 1/2; (d) ideal
fractional integral for 𝑣 = −1/2 compared to the FIR
integrator output 𝑣𝑓 = −1/2; (e) ideal integer integral
for 𝑣 = −1 compared to the FIR integrator output
𝑣𝑓 = −1.

The ϐirst FIR architecture designed with respect
to (6)–(9) can provide only accurate responses based
on the signal samples stored in the delay line of that
FIR architecture. These responses are only true locally.
Therefore, the proposed FIR architecture can work
as a ϐilter or an integer differentiator. Nevertheless,
local fractional‐differentiators and integer/fractional‐
integrators can also ϐind a wide area of applica‐
tion. A perfect example is the fractional proportional‐
derivative‐integral controller, where the responses of
each of the controller’s components can be estimated
locally.
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Moreover, the proposed FIR architecture intro‐
duces a negligible time delay into the closed‐loop sys‐
tem. Thus, the small‐phase‐shift ϐiltering has a posi‐
tive impact on the response dynamics and stability of
closed‐loop control systems. Unfortunately, only the
FIR ϐilter and integer differentiator can be used for
other purposes such as the real‐time identiϐication
and disturbance observer design.

In the second group of tests, the function 𝑓(𝑡)was
divided into three parts. In the ϐirst part, 𝑓(𝑡) = 𝑡2,
𝑡 ∈ (0, 30]. In the second part,𝑓(𝑡) = −40𝑡+2100, 𝑡 ∈
(30, 60]. In the third part, 𝑓(𝑡) = 0.2(𝑡−75)3+374.9,
𝑡 ∈ (60, 90].

These functions were chosen to create similar con‐
ditions for the FIR architectures such as (angular)
velocity corresponding to the rate of the (angle) posi‐
tion change of the second and third system, and the
voltage signal from the analogue controller output in
the ϐirst system. The only exceptions are the discon‐
tinuous transitions between these functions. The ϐirst
considered system is the linear actuator with noise
described by the normal distribution𝑁(0, 0.001), that
affected its voltage input signal. The results are pre‐
sented in Figure 3.

The FIR architecture parameters used to obtain the
results presented in Figure 3, were 𝑑 = 0, 𝑁𝑓 = 40,
and 𝑝𝑓 = 1 for the ϐirst time‐invariant architecture,
and 𝑁𝑝 = 4 and 𝑝𝑓 = 3 for the second time‐variant
FIR architecture. Moreover, the sampling frequency of
the FIR architecture was reduced to 8 Hz. The sam‐
pling frequency of the input signal remained the same
(16384 Hz). Again, ϐive different output examples are
discussed. The ϐiltering results are presented in Fig‐
ure 3a, the integer and fractional differentiation in
Figure 3c and Figure 3d, and the fractional and integer
integration in Figure 3e and Figure 3f, respectively.

Based on the results (Fig. 3), the output of the
FIR architectures was in close range to the theoretical
functions, and so were its global (fractional) differen‐
tials and integrals. As in the ϐirst test, no ϐitting was
done to the data𝑓(𝑡)+𝑁(0, 0.001). In the cases of inte‐
ger (𝑣 = 1, Fig. 3b) and fractional (𝑣 = 1/2, Fig. 3c)
differentiation, the average absolute difference with
respect to the maximum absolute value of the theoret‐
ical signal was 3.78% and 144%, respectively. Unfor‐
tunately, these average values were strongly affected
by the errors appearing during the transition states
between the functions. Therefore, the median was
used to compare integer and fractional differentiation
results. In this case, the median‐based difference was
reduced to 0.19% and 1.04%, respectively. In the case
of integration, the average differences were compa‐
rable to those of fractional differentiation (178.36%
and 188.46% for the fractional and integer integra‐
tion, respectively), while the median differences were
reduced to 1.19% and 1.10% for the fractional and
integer integration.

Figure 3. Comparison of different FIR architecture
outputs during global differentiation and integration –
analogue signal example: (a) reference signal with and
without noise compared to the FIR filter output; (b)
magnified (a) within 𝑡 ∈ [74.5, 75.5]; (c) ideal integer
differential for 𝑣 = 1 compared to the FIR differentiator
output 𝑣𝑓 = 1; (d) ideal fractional differential for
𝑣 = 1/2 compared to the FIR differentiator output
𝑣𝑓 = 1/2; (e) ideal fractional integral for 𝑣 = −1/2
compared to the FIR integrator output 𝑣𝑓 = −1/2; (f)
ideal integer integral for 𝑣 = −1 compared to the FIR
integrator output 𝑣𝑓 = −1.

Comparable results and problems were observed
when the fractional differentiation and integration
were applied to the signal obtained from the digital
encoder of the third system. The results are presented
in Figure 4.

The FIR architecture parameters used to obtain the
results presented in Figure 4, were 𝑑 = 0, 𝑁𝑓 = 1000,
and 𝑝𝑓 = 2 for the ϐirst time‐invariant architecture,
and 𝑁𝑝 = 4, and 𝑝𝑓 = 3 for the second time‐variant
FIR architecture. The sampling frequency of the FIR
architecture was reduced to 4096 Hz. The sampling
frequency of the input signal remained also the same
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Figure 4. Comparison of different FIR architecture
outputs during global differentiation and integration –
digital encoder signal example: (a) reference signal with
and without noise compared to the FIR filter output; (b)
ideal integer differential for 𝑣 = 1 compared to the FIR
differentiator output 𝑣𝑓 = 1; (c) ideal fractional
differential for 𝑣 = 1/2 compared to the FIR
differentiator output 𝑣𝑓 = 1/2; (d) ideal fractional
integral for 𝑣 = −1/2 compared to the FIR integrator
output 𝑣𝑓 = −1/2; and (e) ideal integer integral for
𝑣 = −1 compared to the FIR integrator output
𝑣𝑓 = −1.

(16384 Hz). Again, in the case of the signal from the
digital encoder of the third system, ϐiltering results are
presented in Figure 4a, integer and fractional differ‐
entiation in Figure 4c and Figure 4d, and fractional
and integer integration in Figure 4e and Figure 4f,
respectively.

Based on the results presented in Figure 4, the
output of the FIR architectures was also compara‐
ble to the theoretical functions corresponding to the
global (fractional and integer) differentials and inte‐
grals. The integer (𝑣 = 1, Figure 4b) and fractional
(𝑣 = 1/2, Figure 4c) differentiation results were
characterized by an average difference of 2.09% and
435.00%, respectively. Again, this average indicator

was strongly affected by the errors appearing during
the transition states between the functions. Hence, the
median‐based difference was reduced to 0.000016%
and 0.010% for the integer and fractional differen‐
tiation, respectively. The average differences corre‐
sponding to the fractional and integer integration
were 526.87% and 554.31%, while the equivalent
median differences were reduced to 0.04% and 0.02%,
respectively.

The same tests were conducted with respect to the
second system, where the observable minimum incre‐
mental motion was at the level of a single micrometer.
In this case, however, the FIR architectures required
a drastic reduction of the sampling frequency, which
was reduced to 4 Hz. The remaining FIR architecture
parameters were 𝑑 = 0, 𝑁𝑓 = 40, and 𝑝𝑓 = 2 for
the ϐirst time‐invariant architecture, and 𝑁𝑝 = 4, and
𝑝𝑓 = 3 for the second time‐variant FIR architecture.
The rest of the parameters and conditions remained
the same as in the two preceding experiments.

In the case of the integer (𝑣 = 1) and frac‐
tional (𝑣 = 1/2) differentiation, the average dif‐
ference was 4.84 % and 145.92%, while the median
difference was 0.37% and 0.12%, respectively. The
average differences corresponding to the fractional
and integer integration were 183.81% and 197.19%,
while the corresponding median differences were
0.06% and 0.04%, respectively.

Unfortunately, fractional differentiation combines
differentiation and integration. Therefore, this pro‐
cess is extremely sensitive to noise because the cor‐
responding error increases in each computation cycle
in the FIR architecture. Nevertheless, by reducing the
sampling frequency of the ϐirst FIR architecture more
attenuation was achieved for the stopband frequency
of this architecture. Thus, it provided a better ϐiltered
data set for the second time‐variant FIR architecture.

The time delay introduced to the method of
design of the proposed FIR architecture signiϐicantly
increased the attenuation of the stopband frequency
of the ϐirst FIR ϐilter. However, this delay also intro‐
duced a phase shift to the ϐiltered signal. In result, it
drastically increased the error of the estimated output.
Hence, the reduction of the sampling frequency turned
out to be a better solution to increase attenuation of
the proposed FIR architecture than introduction of a
delay to that architecture. Nevertheless, fractional dif‐
ferentiation and integration require an extreme level
of attenuation for the stopband frequency which was
a challenge for the proposed solution. In this case,
the parameters of each of the discussed FIR architec‐
tures were set according to visual inspection of their
responses. There are therefore two challenges for this
solution, which are increasing the attenuation of the
stopband frequency and optimizing the FIR architec‐
ture parameters.

Moreover, adaptation of the proposed design
method into an IIR digital architecture could solve the
problems of the numerical errors and the required
time base. However, it is not a trivial task due to the
adaptation of the method of least squares into the
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design method of the proposed FIR architecture and
the stability problems of an IIR digital system.

5. Conclusion
In this paper, the design method, and the time‐

variant FIR architecture for real‐time estimation of
local and global fractional and integer differentiators
and integrators were presented. The proposed FIR
architecture was divided into two parts. In the ϐirst
part, the FIR architecture was time‐invariant, while in
the second part, the parameters of the architecture
were estimated with respect to the time base. The
separation into two independent parts was necessary
because a single time‐variant FIR architecture would
require real‐time matrix inversion or extensive ana‐
lytical solutions. The matrix inversion in the design
method was critical to ensure small delay (phase shift)
caused by each of the FIR architectures. The small
delay resulted from the optimum output obtained
with respect to the method of least squares. Unfortu‐
nately, there are limitations of the proposed solution.
The ϐirst limitation is the limited ability to approxi‐
mate the input signal by the time‐variant FIR archi‐
tecture, while the second limitation is strictly related
to the numerical errors. Moreover, since fractional dif‐
ferentiation combines differentiation and integration,
this process is extremely sensitive to the noise and
the limited resolution of the measurements. However,
by reducing the sampling frequency of the ϐirst FIR
architecture or increasing its order, more attenuation
can be achieved for the stopband frequency of the pro‐
posed FIR architecture. Furthermore, despite these
limitations, there are systems oriented on closed‐loop
control, disturbance observations and real‐time iden‐
tiϐication of model parameters, where the proposed
solution can be implemented.
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