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Abstract:
Metaheuristics, such as evolutionary algorithms (EAs),
have been proven to be (also theoretically, see, for exam‐
ple, the works ofMichael Vose [1]) universal optimization
methods. Previous works (Zbigniew Skolicki and Kenneth
De Jong [2]) investigated impact ofmigration intervals on
island models of EAs in their works. Here we explore dif‐
ferentmigration intervals and amounts ofmigrating indi‐
viduals, complementing Skolicki and DeJong’s research.
In our experiments, we use different ways of selecting
migrants and pave the way for further research, e.g.,
involving different topologies and neighborhoods. We
present the idea of the algorithm, show experimental
results.

Keywords: parallel evolutionary computing, metaheuris‐
tics, migration

1. Introduction
Since seminal work of Wolpert and Mac Ready [3]

and formulation of No Free Lunch theorem we know
that each metaheuristic algorithms must be properly
parameterized in order to make it feasible for a par‐
ticular problem. Researchers such as Sudholt, Cantu‐
Paz or Skolnicki and De Jong worked on the paral‐
lel model of an evolutionary algorithm (EA) [4] [5]
arguing that decomposition of population increases
diversity and the efϐicacy of the whole algorithm. We
have been examining this problem and this paper is
devoted actually to extend the results described by
Skolnicki and De Jong described in [2].

While studying the inϐluence of various migra‐
tions sizes (migration rate) and migration intervals
on island models, researchers noticed that the migra‐
tion interval seemed to be a dominating factor to the
best solution found, too frequently migrations cause
islands to dominate others and lose global diversity,
too rarely mirations perform degraded performance
due to slow convergence, but even small migrations
already make a signiϐicant impact on the result of an
island model.

Therefore, we focused on further parametrization
of the parallel EA striving towards checking what kind
of conϐigurations will help us reaching better efϐicacy,
using the popular multimodal benchmarks as case
studies.

The paper is organized as follows: In the next chap‐
ter we introduce parallel models of EAs. In the third
chapter we describe considered algorithm. In chapter
four we present the results and discuss them. In the
ϐifth chapter we come to the conclusion.

2. Parallel Models of Evolutionary Algorithms
EAs are well known and widely decribed in the

literature [6–8] as probabilistic optimizationmethods
inspired by biological analogies (natural evolution).
The essence of EAs is to combine the phenomenon of
random (undirected) genotype changes with strictly
directed environmental pressure on the phenotype. It
is a powerful method for solving a large scale of prob‐
lems that can be described in an appropriate form.
It consists of choosing the right type of algorithm,
designing the method of coding solutions (creating a
solution space of the problem) and constructing the
objective function. To ϐind a solution, we need to know
almost nothing about the function being optimized
(“black box”). Theremay even be no objective function
at all: we can use evolutionary algorithms even when
the only thing we can say about the points in the state
space is which of the two points is better (tournament
selection).

The scheme of the classical evolutionary algorithm
includes the creation of an initial population consist‐
ing of random individuals, the use of genetic opera‐
tors (i.e. certain transformations of the genetic code
of individuals), calculating the value of the objec‐
tive function of individuals, selection. The operations
described above takes place in a cycle that ends when
the speciϐied termination condition is met. The ϐinal
population in each cycle becomes the current for next
one and evolution continues. The algorithm stops at
the user’s request, after a certain time, certain num‐
ber of solution evaluations or when a certain solution
quality threshold is reached. The algorithm is non‐
deterministic (random action of mutation, crossing
and selection), we have no guarantee that the solution
found is optimal, but they give a high probability that
the result will be close to the optimal one and we will
get it in a time that satisϐies us. The genetic operators:
mutation, crossover and selection can be used in dif‐
ferent variants.
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The basic and the necessary elements of an EA are:
‐ Individual – an exemplary solution of the problem –
placed in a certain environment to which he may be
better or worse adapted. The “goal” of evolution is to
create an individual that is as well adapted to a given
environment as possible.

‐ Phenotype – characteristics of a given individual. In
the case of EAs, these are the parameters (features) of
the solution that are subject to evaluation.

‐ Genotype – a complete and unambiguous description
of an individual contained in its genes.

‐ Chromosome – the place where the genotype of an
individual is stored.

‐ Population – a group of individuals living in a com-
mon environment and competing for its resources.

‐ Solution coding – a way of storing any acceptable
solution to a problem in the form of an individual’s
genotype (e.g. a string of bits).

‐ Function of adaptation (ϔitness) – a function that
allows to determine its quality for a given individual
(from the point of view of the problem being solved).
Its values are real non-negative and a higher value of
the function always means that a given individual is
better. In the case of natural evolution, the equivalent
of such a function is the general assessment of an
individual’s adaptation to a given environment. In
practice, this function is usually a slight modiϔication
of the objective function of the problem being solved.

‐ Genetic operators: mutation, crossover and selection
can be used in different variants

2.1. Main kinds of PEA’s

A signiϐicant improvement in the operation of the
EA is obtained by using a parallel EAmodel (PEA). The
basic idea is to divide a task into subtasks, and to solve
them simultaneously using multiple processors.

Realization takes place as work on single popu‐
lation or on several relatively isolated populations,
using massively parallel computer architectures or
multicomputers with fewer and more powerful pro‐
cessing elements.

There are three main types of parallel EAs; there
are global single‐population master‐slave EAs, single‐
population ϐine‐grained EAs, and multiple‐population
coarse‐grained EAs.

The ϐirst type of parallel models is the master
slave [9]. It’s an easy to implement and very efϐi‐
cient method of parallelisation where we use a sin‐
gle panmitic population, just like in a simple EA, but
evaluation of the individuals and genetic operators is
parallel. This model does not assume anything about
the underlying computer architecture. Each individual
may compete and mate with any other (thus selec‐
tion and mating are global). Selection and crossover
consider the entire population. In this model master
stores the population, and slaves evaluate the ϐitness
of an individual which is independent from the rest
of the population, and assigning a fraction of the pop‐
ulation to each of the processors available. Commu‐
nication between master and slave occurs only when

each slave receives its subset of individuals to evaluate
and when the slaves return the ϐitness values. The
algorithm is usually synchronous.

The second type, ϐine‐grained parallel EAs [10]
consist of one spatially‐structured population that
limits the interactions between individuals. Selection
andmating are restricted to a small neighborhood, but
neighborhoods overlap permitting some interaction
among all the individuals. The ideal case is to have only
one individual for every processing element available.
The most popular structures used for this model are
ring, torus, cube or hypercube. Thismodel is suited for
massively parallel computers.

Third, the most popular method of parallel imple‐
mentation of EAs is multiple‐population EAs [4]. It
consist in few relatively large subpopulations which
exchange individuals occasionally in process named
migration, controlled by several parameters.

They are known as “distributed” EAs, because
they are usually implemented on distributed‐memory
MIMDcomputers (possibly also usingVLSI circuit syn‐
thesis, GPGPU or HPC) or the “island model” because
relatively isolated demes we can call “islands”. They
are also called coarse‐grained EAs, since the compu‐
tation to communication ratio is usually high.

The main idea is that copy of the best individual
found in each deme is sent to all or one of its neighbors
after every generation.

It is possible to use different approaches to solve
this problem [11], such as work with isolated demes
and with a “delayed” migration scheme in which com‐
munications began only after the demes were near
convergence (very high migration rate). In this case
the solution found by isolated demes was much lower
than that reached with a single large population, how‐
ever, this delayed scheme found solutions of the same
quality as the panmictic population and as multiple
demes with frequent migrations. We can also migrate
solutions between demes after the demes converged
completely [12,13].

Sometimes migration happens at regular inter‐
vals, and sometimes [13] migration occurs after the
demes converged completely (the author used the
term “degenerate”) with the purpose of restoring
diversity into the demes to prevent premature conver‐
gence to a low‐quality solution.

In practicewe take a few conventional (serial) EAs,
run each of them on a node of a parallel computer, and
at some predetermined times, or number of carried
evaluations in an EA, exchange a few individuals.

Most of the time, populations are in equilibrium
(i.e., there are no signiϐicant changes in its genetic
composition), but that changes on the environment
can start a rapid evolutionary change. Therefore, the
arrival of individuals from other populations can
punctuate the equilibrium and trigger evolutionary
changes.
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2.2. PEA’s Main Parameters

Main parameters of migration are the topology
that deϐines the connections between the subpopula‐
tions, migration rate that controls how many individ‐
uals migrate, and migration interval that affects the
frequency of migrations, the number of islands, and
the populations sizes.

Researchers [11, 14] are trying to ϐind relation‐
ships between important PEA parameters. It is difϐi‐
cult and differs for different methods of emigration
and immigration and the problem being solved.

Finding these dependencies would be also helpful
in estimating the optimal number of processors for
solving problems in the parallel model.

So it is worth to test it for manz different settings.
Also different ways of creating ϐitness and muta‐

tion and crossover functions, using a single population
or multiple subpopulations (dems), different ways of
exchanging migrants and how selection is applied
(globally or locally) were investigated [15].
2.3. Topologies

Many researchers have struggled with the topic of
island model communication topology. It is a major
factor in the cost of migration. Densely connected
topology may promote a better mixing of individuals,
but it also entails higher communication costs. The
general trend is to use static topologies that are spec‐
iϐied at the beginning, but some analyse [4] of the
design and expected optimization times depending
on the topology lead to changes during the execution
of the algorithm according to the settings. We call
it dynamic topology schemes. It speeds up the opti‐
mization. Migrants are sent to demes that meet some
criteria.

[16] also studied the size of the connection topol‐
ogy impact and the appropriate topology choices for
different applications. Migration topology rankings
(more precisely, preorders) were built for a different
number of islands, different optimization problems
and different basic algorithms.

There are some unresolved questions in this
model, such as:
‐ what is the level of communication necessary to make
a parallel EA behave like a panmictic EA?

‐ what is the cost of this communication?

‐ is the communication cost small enough to make this
a viable alternative for the design of parallel EAs?

2.4. EA’s Sequential Contra Parallel Versions

Sequential EAs are very effective in many applica‐
tions. However, there are [15] problems in their use
that can be solved with PEA.

It also happens that sequential EAs can get trapped
in a sub‐optimal region of the search space.

PEAs can search different subspaces of the search
space in parallel, thus reducing the likelihood of being
trapped by low‐quality subspaces.

Migration of individuals between populationsmay
increase the selection pressure [5]. This has the desir‐
able consequence of speeding up convergence, but it
may result in an excessively rapid loss of variation that
may cause the search to fail.

For example, sometimes problems require the
use of very large populations [17], and the memory
needed to store each individual can be signiϐicant. In
some cases, this prevents an application from running
efϐiciently on a single machine, so some parallel form
of EA is necessary. After dividing it in sub‐population,
as different islands retain a degree of independence
and thus explore different regions of the search space,
the probability of an improved score increases. When
the performance of a split evolutionary algorithm is
similar to that of a large population, the use of migra‐
tion makes the performance equal to or exceed that of
a large population.
2.5. Dynamics of PEA’s

Skolicki and deJong [18] described themechanism
of improving the results of pea operation, using the
two‐level dynamics of the island model, dividing it
into levels: local on each island and inter‐island inter‐
actions. These two evolutionary processes interact
and may contribute to the overall outcome to varying
degrees. But it is important to choose the number of
islands (global) and population size (local level) on
these islands accordingly. And to choose a migrant
at the right moment, so that he is good enough and
admitted at the right time so that he does not disrupt
the processes taking place there.
2.6. Our Inspirations

In [2], researchers have experimentally studied
the inϐluence of various migrations sizes (migration
rate) and intervals on island models using a set of
special functions. They notice that themigration inter‐
val seems to be a dominating factor, with migration
size generally playing a minor role with regard to
the best solution found. Too frequently migrations
cause islands to dominate others and lose global diver‐
sity, even small migrations already make a signiϐicant
impact on the behavior of an island model but rare
migrations cause a degraded performance due to the
slow convergence.

While examining the behavior of the island model,
we identiϐied the need to study the impact of migrant
selection strategies on the quality of the solution. In
our approach, we copy selected migrants (not relo‐
cate, like most of researchers before) and join the
population on the target island where they take part
in genetic operations. At the end, they are subjected
to selection together with the rest of the population,
i.e., we allow them to take part in genetic operations
together with the residents of the island.

Using different migrant selection strategies, we
found that they had a noticeable impact on the results
obtained.Weused two strategies to select the best and
most distantmigrants. The control strategy of random
selection did not give such signiϐicant improvement.
There has been a big progress withmany settings (dif‐
ferent migration intervals and number of migrants)
regarding the migration interval and the size of the
migrant group.
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Figure 1. Three ways of selecting migrants studied. The
colors used are referenced to bar results charts

3. The Considered Algorithm
In the island model, we use three migrant selec‐

tion strategies: “best” and “max distance” (“mDist”)
without repeats, and “random”. Those strategies will
be discussed in detail later.

In our approachmigrations consist of copying (not
moving) selected individuals fromthe source islandon
destination island. Fourmigration intervalswere used
every 5th, 15th, 25th and 35th evaluation, and there
were four migrant group size settings: 1, 4, 9 and 12
individuals.

Migrant admission strategywas to join them to the
population on destination island, then using crossover
and mutation operators, then selection.

Three migrant selection strategies without repeti‐
tions (shown in Fig. 1) were used:
‐ “best” – n individuals were selected in order of ϔitness
values, starting from the best one

‐ “random” – n random individuals were randomly
selected

‐ “mDist” – Euclidean distances of all individuals were
tested in pairs and then the farthest ones were
selected in pairs (if possible) until the number of
migrants set in the parameters was exhausted
Eachof the algorithmsettingswere tested10 times

and the results were averaged.

4. Experimental Results
All computations were performed on a PC work‐

station with Windows 10 Intel Core i5‐2520M 2.50
GHz, 8 GB RAM memory and using Intel HD Graphics
3000 graphic card.

The algorithm was created using the jMetalPy
framework, and the movement of migrants between
the islands was created using rabbitMQ, Docker and
Pika. We investigate Rastrigin and Sphere (De Jong)
problems in dimension 200. The topology consists of
5 islands connected in a ring with two‐way trafϐic. The
population size on each island is 16 and the offset is 4.
We study the results of the algorithm for one island by
reference. Then the population has a cardinality of 80
and an offset of 20.

When comparing evolutionary algorithms running
on different hardware, it is important to have an equal
number of evaluations performed in the algorithms.
This is because environment parameters are different,
e.g., the size of the operating memory, which affects
the speed of the computer.

Similarly, this is truewhencomparing analgorithm
running on one island to one running on ϐive islands.
But it’s not only the number of evaluations that mat‐
ters. It is also important that the number of cycles of
the algorithm is equal on one island and each of the
ϐive islands. We achieved this by equalizing the popu‐
lation and offset on one island and the total number
on many islands, as we described above.

The end criterion was the maximum number of
evaluations. For the ϐive islands model: 15,000 for
the Sphere and 20,000 for the Rastrigin, and for one
island, 75,000 for the Sphere problem and 100,000 for
the Rastrigin problem. This means that not only the
stop condition, but also the size of the population are
the same in the compared studies.

In Figures 2 and 3 (for the Rastrigin and Sphere
problems with different migration strategies, respec‐
tively), the color scale (from the worst result – dark
red to the best result – dark green) shows the average
results of various settings: the migration interval and
the size of the migrant group. We can see that the red
color values are grouped in the same area and the
green color values in approximate areas.

The same thing, but in the form of a 3D spatial
graph, can be seen in charts 4 and 5 (for the Rastrigin
and Sphere problems with the examined settings of
the migration interval and the number of migrants,
respectively). The best results are those with the low‐
est position in the drawings, and the worst are those
placed highest. Theworst results are in the same place
in all the drawings, and the best ones occupy similar
areas. We can see a similar inclination and shape of
the planes created for these samples –which indicates
that the size of the migrant groups and the inter‐
vals work similarly for these different problems and
strategies.

In Figures 6 and 7 (for the Rastrigin and Sphere
problems, respectively), the bar graphs show the com‐
parison of average ϐinal results of the ϐive‐island and
one‐island settings. Here we can clearly observe how
many attempts of the tests on ϐive islands (interval,
size of the group of migrants) led to success with
a given migrant selection strategy, i.e. improved the
result of the single‐island model (its graph is to the
left of the bar of one island). For example, the strategy
“best” and “mDist” in many settings (interval, size of
the group of migrants) led to an improvement in the
result in relation to the single‐islandmodel. And in the
“random” strategy – comparative, because the migrat‐
ing individualswere simply drawn randomly, it did not
improve the result of one island at all (for Sphere) or
almost at all (for Rastrigin).
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(a) Rastrigin with “best” migration strategy (left) and with “mDist” (right)

(b) Rastrigin with “random” migration strategy

Figure 2. Average results achieved for Rastrigin problem with different migration strategies. Results tabulated by
migration intervals and numbers of migrants. Color scale and intensity – worst result – dark red, best result – dark green

(a) Sphere with “best” migration strategy (left) and with “mDist” (right)

(b) Sphere with “random” migration strategy

Figure 3. Average results achieved for Sphere problem with different migration strategies. Results tabulated by different
migration intervals and numbers of migrants. Color scale and intensity – worst result – dark red, best result – dark green

Table in Figure 8 describes (for each problem,
each way of selecting migrants, different migration
intervals and numbers of migrants) ranking (in plus
or minus) of the results obtained in relation to the
corresponding result obtained on one island.

The following symbols have been used in the table
Figure 8:
‐ 0 – reference point – result for a model with 1 island

‐ positive numbers – position of ϔive island model with
speciϔic parameters in ranking of results better than
appropriate “reference” on one island

‐ negative numbers – position of ϔive island model with
speciϔic parameters in the ranking of results worse
than the result of appropriate “reference” on one
island
The ϐirst three columns in the Table 8 describe

algorithm start parameters: the number of islands,
the migration interval and the number of migrating
individuals.

Figures 12 and 13 show the runs of the 10‐trial
average for each setting (interval, migrant group size)
in the winning strategies for a given problem.

For easier understanding of Figure 8, please com‐
pareFigure13 showing all line results of Sphere200 in
“best” version, it’s values shown in Figure 3a and the
forth column of the Results table Table 8, i.e., Sphere
200 / “best” column. Find the result obtained on one
island in the graph and notice that subsequent results
have the same number in the table as the distance of
their graph from the graph obtained on one island.

Similarly, when considering Rastrigin problem,
Figure 12, Figure 2a and Table 8 (the seventh column,
ie. Rastr 200 / “best” column) should be considered.

The best, taking into account migrants selection
strategies, were: “best”, then “mDist” and ϐinally “ran‐
dom”.
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(a) “best” (left) and “mDist” (right) migrant selecting strategy

(b) “random” migrant selecting strategy

Figure 4. Comparative results of Rastrigin problem, with the examined settings of the migration interval and the number
of migrants

(a) “best” (left) and “mDist” (right) migrant selecting strategy

(b) “random” migrant selecting strategy

Figure 5. Comparative results of Sphere problem, with the examined settings of the migration interval and the number of
migrants
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(a) “best” (left) and “mDist” (right) migrant selection strategy

(b) “random” migrant selection strategy

Figure 6. Graphs of results of Rastrigin problem, obtained with different settings of the migration interval and the number
of migrants on the five islands. For comparison – red bar – the result achieved on one island with comparable settings

(a) “best” (left) and “mDist” (right) migrant selection strategy

(b) “random” migrant selection strategy

Figure 7. Graphs of results of sphere problem, obtained with different settings of the migration interval and the number
of migrants on the five islands. For comparison – red bar – the result achieved on one island with comparable settings
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Figure 8. Ranking, for each of the examined migration intervals and the number of migrants, (in plus or minus) the results
obtained in the PEA with five islands in relation to the EA result obtained on one island for the same problem and the
method of selecting migrants

Figure 9. Comparing the best and worst results in five island model to one island model for different migrants selection
strategies. Rastrigin problem)

In Sphere200/random, no settings connectedwith
ϐive islands gave results better than the one island
score, and in Rastr200/random only one setting
(co5ile4) gave better results when comparing analo‐
gously.

In the other versions of the migration strategy
(“mdist” and “best”), for both problems, there are
always some ϐive island results that perform better
than one island.

Thismeans that our selective selection ofmigrants
on source island is working. We achieve the best
results when we select the best or more diverse indi‐
viduals (the most distant in our case), the results are
then signiϐicantly better thanwhenwe selectmigrants
randomly.

The best results in the Sphere problem were
achievedwith the “best” strategy (settings – interval 5,
group of 4 migrants), worse with the “mDist” strategy
(interval 15, group of 9 migrants), and all settings of
“random” strategy achievedworse results than results
of one island.
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Figure 10. Comparing the best and worst results in five island model to one island model for different migrants selection
strategies. Sphere problem

Figure 11. Comparing the improved results (per six settings = 2 problems * 3 strategies) of PEA with five islands in
relation to the result of EA on one island, obtained for the examined migration intervals and numbers of migrants

The best results of the Rastrigin problem were
achieved with “best” strategy (settings – interval 5,
group of 4 migrants), followed by “mDist” (settings –
interval 15, group of 4 migrants) and only one “ran‐
dom” strategy setting (settings – interval 5, group of 4
migrants) was better for ϐive islands than the results
of one island.

In the “random” strategy, individuals of differ‐
ent quality were randomly selected. Therefore, their
results are worse than in strategies where carefully
selected individuals – the best or the most diverse –
migrate qualitatively or improve the diversity on the
destination island.

For every issue andmigration strategy, the settings
with interval 5 and size of migration group 9 or 12 –
always performed signiϐicantly worse than all others.
It happens because in such cases migrants arriving in
large numbers on the destination island hinder the
evolution on this island, almost replacing its existing
population These are cases of short migration inter‐
vals with a big number ofmigrants (close to the size of
the population) at the same time.

The additional information in Figure 9 (for Rast‐
rigin) and Figure 10 (for Sphere) show the numerical
values achieved on ϐive islands (best andworst result)
and on one island and show the numerical differences
between these results.

Let’s look at this differences. As we can see the
greatest value differences between results achieved
on ϐive islands and biggest improvement on ϐive
islands over the scores of a single islandwere achieved
for “best”migrant selection strategy in both problems.
In Rastrigin (Fig. 9) “best” surpassed the one island
score by 8,13, “mDist” by 5,72, and a “random” by 0,66.
In Sphere (Fig. 10) “best” surpassed one island score
by 0,43, “mDist” by 0,14, and “random” by 0,05.

Figure 11 summarizes positive values in Figure 8
by rows. In each ϐield at the intersection of the appro‐
priate migration interval and the size of the migrant
group, the number of results from ϐive islands that
achieved success appears, i.e., they were better than
the result on one island (out of six possible – two
problems * three strategies).

9
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Figure 12. Averaged runs of parallel calculations on five islands and reference calculations obtained on one island for a
winning migrant selection strategy (“best”) for the Rastrigin problem with dimension 200

Figure 13. Averaged runs of parallel calculations on five islands and reference calculations obtained on one island for a
winning migrant selection strategy (“best”) for the Sphere problem with dimension 200

10
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As we can see the best results we achieved for low
number of migrants (one, four or nine) and more fre‐
quent migrations (after every 5th or every 15th eval‐
uation). This is because these are short intervals and
small groups of migrants – that is why they have the
opportunity to improve the quality of the population
on the target, and not disrupt the course of processes
on it.

If we focus on the worst settings of the interval
and the number of migrant groups, we can see that,
as mentioned above – large migrations destroy the
population of the destination island by replacing it,
both when they are frequent (parameters – interval 5,
migrant group size: 9, 12), when they are very disturb‐
ing, and rare (parameters – interval 35, migrant group
size: 9, 12).

Another groupof theworst attemptswere inwhich
migrationswere few and rare (parameters – interval –
25, 35, migrant group size: 1).

5. Conclusion
Inspired by the works of De Jong and Skolicki, we

performed an experiment for Rastrigin and Sphere
problems. We used four migration intervals and four
sizes of migrant groups, expanding the experiment
with a study for different migration strategies.

We observed that the strategieswe used for select‐
ing migrants in many cases led to improved results
compared to our reference, i.e., the EAmodel working
as one island.

In the “best” strategy, we sent group of best indi‐
viduals from the source island. So therewas a possibil‐
ity that on the destination island they would be good
material for the further operation of the evolutionary
algorithm.

Using the “mDist” strategy, we sent a group of
individuals that were as distant as possible from each
other in terms of genotype. Thus, they had a chance to
increase diversity on the destination island, or even to
restore diversity if the population on the destination
island was too convergent.

We intend to continue our research on this impor‐
tant topic in the future. We will conduct our research
using HPC on a large scale. In addition, we intend to
study the behavior of a parallelized EA in an environ‐
ment with delays, assuming the possibility of desyn‐
chronization and taking care of scalability. This will
make it possible to compare the operation of the algo‐
rithm in contrast to coherently and synchronously
operating master‐slave models and the classic island
model.
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