
Abstract:

1. Introduction
An autonomous underwater vehicle may be defined as

a vehicle with a sensorial system and an actuator system,
working in an uncertain and unstructured underwater
environment (unknown and under severe disturbance),
managed by control system and able to undertake a user
specified mission (such as ocean mapping, surveying or
monitoring). Because of the highly nonlinear dynamics
of an autonomous underwater vehicle (AUV) and the
difficulty in modeling the environment and its interac-
tion with the AUV, controlling an AUV in an underwater
environment presents many theoretical and engineering
challenges. Various advanced control systems have been
proposed such as sliding-mode, robust and nonlinear
control strategies have been applied with some success
[1]–[5]. Adaptive control as well as fuzzy-logic control
and neural-network-based control have also been propo-
sed [6]–[13].

This paper presents an adaptive control method based
on fuzzy neural network for Autonomous Underwater
Vehicle (AUV). The Fuzzy Neural Network (FNN) could build
the inverse model of AUV through on-line learning algo-
rithm, which is free of fuzzy neural network structure know-
ledge and prior fuzzy inference rules. The adaptive control-
ler for AUV based on FNN is proposed, and then the stability
of the resulting AUV closed-loop control system is analyzed
by Lyaponov stability theory. The validity of the proposed
control method has been verified through computer simula-
tion experiments.

Keywords: autonomous underwater vehicle, fuzzy neural
network, adaptive control, stability.

One of the earlier researches in AUV control was
developed by Yoerger and Slotine [5]. They proposed
a sliding-mode controller and investigated the effects of
uncertainty of hydrodynamic coefficients and negligence
of cross-coupling terms. The result showed that the adap-
tive sliding-mode controller outperformed a conventio-
nal linear controller for a wide range of velocity. Fossen
and Blanke [3] derived an output feedback controller
using nonlinear control theory and feedback from the
axial water velocity. They proved that a nonlinear obser-
ver combined with an output feedback integral controller
provides exponential stability. Healey and Lienard [4]
designed a sliding-mode controller for a six-degrees-of-
freedom (DOF) AUV control. They decomposed the system
into noninteracting subsystems and grouped certain key
functions for the separate functions of steering, diving

and speed control. Choi and Yuh [6] developed an adap-
tive controller based on bound estimation and implemen-
ted it for AUV control. Ishii [7] proposed a neural-
network-based controller associated with an adaptation
method named “Imaginary Training” for heading-keep-
ing control of an AUV called “Twin-Burger.”
In view of the versatilities of neural networks and fuzzy
logic, a fuzzy neural network can be expected to exhibit
many advantages. The combination of fuzzy inferences
and neural networks has been researched extensively re-
cently. Fuzzy Neural systems are multilayered connected
networks that realize the elements and functions of
traditional fuzzy logic control, decision systems. A trai-
ned fuzzy neural system is isomorphic to a fuzzy system
extracted and interpreted from the network. The system
can automatically and simultaneously identify fuzzy logic
rules and adapt its membership function. By utilizing the
learning capability of neural network, the systems can
construct input-output mapping for many applications.

Jang [14] proposed architecture of fuzzy neural
network called Adaptive-Network-Based Fuzzy Inference
System (ANFIS), which can be taken as a basis for cons-
tructing a set of fuzzy rules, and generate the stipulated
input-output pairs. Pattern learning or on-line learning is
adopted to update the network. Cho and Wang [15] used
the number of input variables and number of rules to
determine the structure of their neural network. Then the
network is trained by using back-propagation algorithm.
Although the above methods can construct the input-
output mapping for many applications. However no effi-
cient process for reducing the complexity of a fuzzy neu-
ral network has been suggested. To increase the efficien-
cy and reduce the complexity of the network, many self-
constructing fuzzy neural networks have been proposed
in the literature. These systems are inherently modified
Takagi-Sugeno-Kang type fuzzy rule based models pro-
cessing neural network’s learning ability. Juang and Lin
[16] proposed such a system. There were no rules in that
SONFIN initially. The inference rules were created and
adapted as on-line learning process simultaneous
structure and parameter identification. Based on that
generalized fuzzy neural networks, Juang and Lin [17]
also designed an adaptive controller for the robotic
manipulators. The simulation results showed that the
error convergence rate with the Adaptive Fuzzy Neural
Control (AFNC) was fast, the flexibility adaptation and
tracking performance of this adaptive control system was
verified theoretically. The asymptotic stability of the
MIMO control system was also established and analyzed
using Lyapunov approach [18].

Wang and Lee [19] develop their previous feed for-
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ward neuro-fuzzy systems to recurrent neuro-fuzzy sys-
tems with better control performance and learning con-
vergence. They use recurrent neuro-fuzzy network to mo-
del the inverse dynamics of an AUV and the feedback-
error-learning method to on-line fine-tune the parame-
ters of the recurrent Neuro-fuzzy controllers.

This paper extends the previous fuzzy-neural control
approaches and presents an adaptive controller based on
FNN to learn the inverse model of AUV. The research aims
to develop an AUV motion controller, which is free of the
pre-designed structure of Neural Network and is free of
the pre-training process. The inverse dynamic model of
AUV could be obtained through on-line adaptive lear-
ning, resulting in improved flexibility and robustness of
AUV control system.

The rest of the paper is organized as follows. Section
II briefly describes the structure and learning algorithm
of FNN. The dynamic model for AUV is proposed in section
III. In section IV, the adaptive controller based on FNN is
designed and its stability is proved in section V. In sec-
tion VI computer simulations of the proposed control
scheme and PD controller are conducted and their per-
formances are compared to validate the effectiveness of
the proposed approach. Finally, section VII concludes the
paper.

, ; (1)

2. The Architecture and Learning Algorithm
of FNN

The FNN is based on extended RBF neural network.
The architecture is shown in Fig. 1, which includes 5
layers, where

Each node in layer 1 represents an input lingu-
istic variable.

Each node in layer 2 represents a membership
function (MF), which is in the form of Gaussian functions:

Where is th membership function of ; is the center
of the th Gaussian membership function of ; is the
width of the th Gaussian membership function of ; is
member of input variables; is the member of member-
ship functions.

Each node in layer 3 represents a possible IF-
part for fuzzy rules. For the th rule , its output is:

Fig. 1 Architecture of FNN.
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(4) can be also written as

(5)

In order to research on the controller, we are conside-
ring the 6-DOF dynamic model of AUV described in [23].
In general, the nonlinear dynamic equations of motion of
a six- DOF AUV expressed in the body-fixed coordinate
frame can be written as:
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Where and is the center of th RBF
unit.

We refer to these nodes as (normalized) no-
des. Obviously, the number of nodes equals to that of

nodes. The output of the node is:

, (3)

Each node in this layer represents an output
variable as the summation of incoming signals

(4)

Where is the value of an output variable and is the
weight of each rule.

An on-line GD-FNN learning algorithm can be applied
for the above network, which is described in detail in [21]
and [22]. The learning algorithm includes structure iden-
tification and parameters estimation, which are perfor-
med automatically and simultaneously. Where the struc-
ture identification is to determine the number of mem-
bership functions and gain fuzzy rules. Parameters esti-
mation include modification the parameters in IF parts
and THEN parts of the fuzzy rules. There are two criteria
on the new fuzzy rules generation, that are the system
error must be larger than threshold , and the minimum
Mahalanobis distance must be larger than the threshold

. When a new rule is generated, the parameters of GD-
FNN would be updated. The current training sample in-
putting to the network are used as the center of a Gussian
membership function of a new rule. The initial weights of
GD-FNN can be determined by orthogonal least squares
algorithm. The test results with an articulated two-link
manipulator show that the learning algorithm is superior
in terms of learning efficiency and performance.
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vector in the global coordinate frame; is a positive
constant.

The filtering tracking error of AUV can be defined as:

(12)

Where , and is a positive cons-
tant.

Therefore (12) can be described as the following
equations

(13)

(14)

Where, is the virtual reference track in the global coor-
dinate frame.

The virtual reference track meets with the following
equations:

(15)

(16)

Taking derivatives to both sides of (13) and substitu-
ting the dynamic model of AUV, the dynamic equation of
system error of AUV can be organized as following:

(17)

To obtain (17), the following equation has been
applied:

(18)

Define that

(19)

The FNN and its learning algorithm are adopted to
approach , yielding

(20)

Where, is the approaching error, and , ,
is positive constant; is the vector of weights of the

ideal FNN after learning.
The control instance is designed as:

(21)

(22)

�

�

d

W

(6)

(7)

Where is the inertial matrix including both rigid-
body mass and added mass; is the coriolis and cen-
tripetal matrix including rigid-body mass and added mass;

is the total hydrodynamic matrix that includes
radiation-induced potential damping, linear skin friction,
wave drift damping and damping due to vortex shedding;

contains the restoring terms formed by the vehicle’s
buoyancy and gravitational terms; represents distur-
bances (e.g., wave and current) from environmental for-
ces and moments acting on the vehicle. includes the
control forces and moments; is a velocity transfor-
mation matrix (a Jacobian matrix) that transforms the ve-
hicle-fixed velocities to those of the earth-fixed reference
frame; Translational and rotational movements in the
global reference frame are represented by that includes
earth-fixed position and Euler angles; consists of six
velocity components of motion (surge, sway, heave, roll,
pitch, and yaw) in the vehicle coordinate system. In the
body fixed frame, the dynamic model has the following
characteristics:

, ; ; .

The dynamic model can be written in the global coor-
dinate frame as follows:

(8)

Where ;

;

;

; ;

(9)

(10)

In the global coordinate frame, the dynamic model
has the following characteristics:

, ;

; .

Suppose that the expected motion state of AUV is
limitary, that is:

(11)

Where, is the expected position vector in the global
coordinate frame; is the expected velocity vector in the
global coordinate frame; is the expected acceleration
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4. The adaptive controller based on fuzzy
neural network
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(23)

Substituting (19), (21) and (23) into (17), gives the
dynamic equations of error of the closed-loop system:

(25)

(26)

(27)

Where, is the estimated error;

is the estimation of ;

is the estimation of matrix ; is the gain
matrix, which meets with ; is the robust
controller which is used to increase system robustness to
approaching error of the neural network and the environ-
ment disturbances. From (21) we can see that the adap-
tive controller is the integration of fuzzy neural network

controller , PD controller and robust
controller .

In order to guarantee the stability of the control sys-
tem, the Fuzzy Neural Network must be convergent. In
other words, the parameters of fuzzy neural network must
be bounded. From (5), we know that if the weights of the
network are bounded, then the network must be boun-
ded. Define the constraints set for resulting weight
matrix :

(28)

Also define

(29)

The adaptive law of the weights of network can be
described as:

(30)

Where, is a positive constant.

If the initial values of the weights satisfy
, and the adaptive law (30) is adopted, then the
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5. Stability analysis

Theorem 1.

weights satisfy , .

We consider the following Lyapunov function
candidate:

(31)

Taking the derivative of the Lyapunov function with
respect to time, we have

(32)

When and , thus it can

be guaranteed that when

and , . Thus is also gua-

ranteed. is bounded by constraint set for all .

Suppose that the expected trajectory of AUV
is bounded; the unknown external force disturbance
and the approaching error of neural network are both
zero. If the input to the controller is:

(33)

And the adaptive law of neural network is given by
(30), and then the tracking error will approach to
zero.

Now that the assumption of the conditions are
satisfied and the control law (33) is adopted, thus the
error dynamic equation of closed loop system will be:

(34)

We consider the following Lyapunov function

(35)

Taking the derivative to the above Lyapunov function
gives:

(36)

Substituting and

into (36) yields:

(37)
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Proof:

Theorem 2.

Proof:

s
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(41)

The simulation could be done by substituting some
parameters into the 6 DOF dynamic AUV model (8)-(10).
The goal of the simulation is to verify the validity of the
proposed adaptive control based on fuzzy neural network
by having AUV track a series of predetermined trajectories
under the disturbance of the ocean current and comparing
the proposed control with other control methods.

The current velocity function is defined as
(knot); the current direction function is

defined as (degree). The key parame-
ters in the controller are assumed as following: The width
of Gaussian function is determined as 0.1; = 1000;

= 100; = 0.083; = diag (0.1 0.1 0.1 0.1 0.1 0.1);
= diag (2 10 2 10 2 10 3 10 3 10 3 10 ).
In the simulation experiments, AUV is required to

track a user-planned trajectory at constant speed 4kn.
After finishing the simulation experiment, there are infe-
rence rules that have been generated. The system takes
about 300s-400s to learn the new rules. From the errors
analysis in table 1, Fig. 2(b), Fig. 3(b), Fig. 4(b) and
Fig. 5(d), we can see at the beginning of the simulation,
the results of PD and the adaptive controller („output of
controller” in the following plots) are similar. While after
the learning process being accomplished, the output of
the adaptive controller and the output of fuzzy neural
network are very close, and are superior to PD controller
output. From the effects of trajectory tracking in Fig.
2(a), Fig. 3(a), Fig. 4(a) and Fig. 5(a)-(c), we can con-
clude that our proposed adaptive controller is advanced in
its self constructing and self learning. The controller is
also robust to the disturbance of complex ocean current.

6. Simulation results
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(a) Trajectories

(b) Tracking Errors

Fig. 2. Tracking a triangle trajectory.

Under the condition 1 of (30), (37) becomes

(38)

Under the condition 2 of (30), (37) becomes

(39)

Suppose that the expected trajectory of AUV
is bounded; the unknown external force disturbance
and the approaching error of neural network are both
zero. If the input to the controller is (21), the adaptive
law of neural network is (30), and robust controller is
defined as:

(40)

Then the tracking error will approach to zero.
We consider the Lyapunov function (35), thus

Theorem 3.

Proof:
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(a) Trajectories

(b) Tracking Errors

Fig. 3. Tracking a rectangular trajectory.

(a) Trajectories

(b) Tracking Errors

Fig. 4. Tracking a comb-shape trajectory.

(a) 3D Trajectories

(b) Trajectories projection on Northeast plane

(c) Trajectories projection on Depth-east plane

(d) Tracking Errors

Fig. 5. 3D trajectory tracking.
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7. Conclusion
An adaptive controller based on Fuzzy Neural Network

is proposed and its stability for the closed loop control
system is proved theoretically. The stability and robust-
ness of the controller are also verified by simulation expe-
riments in which AUV is required to track trajectories with
current disturbance. Through the theoretical analysis and
simulation verification, we can conclude:

The on-line learning algorithm of the fuzzy neural net-
work is advanced in its self-constructing and self-learning
properties, so that the complex unknown model can be
approached precisely based on this kind-learning algo-
rithm.

The fuzzy neural network is also able to learn the dis-
turbance to AUV under complex underwater environment,
so that the disturbing effects to AUV motion control
would decrease efficiently.

The adaptive controller based on fuzzy neural network
can be applied in trajectory tracking control for AUV. The
system tracking error decreases as the on-line learning
processes.
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