
Abstract:

1. Introduction
The localization of mobile robots is the fundamental

problem of determining the position and orientation of
the robot. Researchers have looked into many different
methods of solving the problem several kinds of sensors.

The first solutions to this problem relied on techni-
ques that had been used in the past by sailors and the mi-
litary. These solutions are sometimes referred to as posi-
tion tracking. These require that you begin in a known

Localization is a fundamental problem of autonomous
mobile robots. Localization is the determination of the po-
sition and orientation of a robot. Most localization systems
are made up of several sensors and a map of the environ-
ment.

Sophisticated localization systems can solve both the
global location problem and the kid-napped robot problem.
Global localization is the process of placing the robot into
an unknown location within the map, and the robot should
be able to locate itself within a relatively short period of
time. The kidnapped robot problem is similar to global loca-
lization, as it is a test of how well the robot is able to reco-
ver after becoming lost. The robot is “teleported” to a new
location, and the robot should again be able to determine
its new location within a relatively short amount of time.

CReSIS (Center for Remote Sensing of Ice Sheets) is de-
veloping autonomous robots in an effort to measure ice
sheets characteristics in Greenland and Antarctica. These
robots currently rely on differential GPS for localization and
navigation. In order to survive for long periods of time in
these environments, however, the robots need to be able to
return to campsites in order to refuel and unload the data
that has been acquired. In order to perform this task effec-
tively and safely, a more elaborate system is required. A lo-
calization system that can recognize the dfferent locations
of the campsites is the beginning of this process.

The approach is to use a single camera for use in mul-
tiple types of large-scale environments, indoors and out-
doors using a topological map. The system described uses
an appearance-based approach for recognizing the diffe-
rent locations. The appearance-based methods attempt to
recognize the appearance of a scene rather than specific
objects. Several different types of features are tested in-
cluding histograms, eigenimages, and Hu Moments. Using
these simple features, the system is able to determine its
location within the map at 95% accuracy.

Keywords: topological localization, mobile robotics, com-
puter vision, appearance-based methods.

location; and by measuring how far you have gone in
a specific direction, you can determine where you are.

These solutions usually rely on odometry or inertial
measuring units. Odometry is the measuring of the rota-
tion of the wheels to measure how far the robot has gone.
These systems usually accumulate error as they move be-
cause of the slippage of wheels, especially when turning.
Inertial measuring units tend to drift after some time,
also causing errors.

Most solutions usually rely on a specific type of envi-
ronment such as indoor environments. Few solutions ha-
ve worked both indoors and outdoors.

More recently, SLAM (simultaneous localization and
mapping) has become more popular. This is a problem
where the robot is placed into a new environment with-
out a map, and it must be able to both map an area and
localize itself at the same time. This could be a require-
ment of a search and rescue robot. Some claim that in or-
der to have a truly autonomous robot, the robot must be
able to solve this problem.

However, many robots will always require a priori
maps in order to be able to perform a specific task such as
a delivery robot or the autonomous vehicles in the Darpa
Grand Challenge [10].

Many localization systems can be described by the ty-
pe of map that is being used: geometric, topological, or
a hybrid map. This work uses a topological approach with
the intention of using a hybrid approach later on. A to-
pological map is just an adjacency graph. Nodes are con-
nected to other nodes with edges. A pure topological map
contains no information about size or the distance bet-
ween nodes. However, as part of a navigation system, so-
me extra information such how to move from one location
to another may be stored inside the map as well. Some
examples of a topological localization system include
[31], [17], [29], [5].

In contrast, a geometric based system relies on maps
that show edges, lines, and geometric objects that repre-
sent the map. These maps contain more information and
can localize to a much more fine position. The topolo-
gical system can tell you what location you are in, but not
necessarily where in that location. Some geometric sys-
tems are described in [7], [28], [1].

The goals of these systems are somewhat different.
The goal of a topological system is to tell you which lo-
cation you are in, such as room 314 in Nichols Hall. The
goal of a geometric system is to give a precise determi-
nation of the current location within a specific area.

The hybrid approach attempts to utilize both me-
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thods. In this approach, the topological map usually sto-
res a geometric map of its area.

This paper describes the research working towards
a localization system that can operate in several di erent
environments using only a camera. This kind of a system
has the advantages of being able to use a simple and
relatively inexpensive sensor that is easily portable. It
can be used standalone or in addition to another system
to improve the reliability.

The Polar Radar for Ice Sheet Measurements (PRISM)
project is [19] is part of the Center for Remote Sensing of
Ice Sheets (CReSIS) [9] at the University of Kansas. This
project's goal is to develop radar systems to measure po-
lar ice sheet properties in order to accurately determine
their mass and other characteristics. Such data will help
researchers determine the contributions of polar ice
sheet melting to global climate change and its effects on
the rising sea levels.

Different radar systems have been developed for this
task [19]. In order to accommodate these radar systems,
an autonomous robot is being developed to tow the radar
equipment over a large area. After the robot completes its
traversal, it needs to return to camp to refuel and unload
the data.

For the traversal over the ice sheets, the robot utilizes
GPS for navigation. However, once the robot returns to
camp, it is desirable for the vehicle to use other sensors
for navigation in order to drive through the camp safely
and accurately. A system like the one described in this
paper will allow the robot to safely find the fuel station
and the location for unloading the data without driving
through tent city, the area used for gathering snow for
the camp water supply, or other areas that may be off
limits.

If the tasks of fueling and unloading the data can be
automated as well, then the time to get the robot out of
camp and performing collecting data again can be greatly
reduced and require less
human assistance. In order to operate autonomously for
several weeks at a time, this is a task that must be solved
by the robot [3].

Delivery of packages by either a service robot or a hu-
man can benefit from a localization system. Truck drivers
already use GPS systems to direct them to their next lo-
cation. Assuming the GPS system has enough accuracy
and an accurate map, it could be used in an area such as
an industrial park or a college campus where there are
many buildings and possible locations for delivery.

For delivering packages to specific locations within
buildings such as a college campus mail system, a more
complex localization could be used to direct the delivery
person to the specific location using a PDA with a camera
or automated delivery robots could be used.

A PDA with a camera could be used as a tour guide for
locations like the Smithsonian or Disneyland. A map of
the area could show the current location and orientation

1.2. Motivation

Package Delivery

Tourism

1.2.1 PRISM/CReSIS

of the individuals on the tour as well as other interesting
locations and provide information about them.

Service robots provide assistance to humans in many
different ways. Wheel chair service robots have been used
such as the Bremen Autonomous Wheelchair as discussed
in [20].

Wheel chair service robots, autonomous or not, can
benefit from having a lightweight localization system.
Assuming that a PDA with a camera or a laptop and a ca-
mera can be mounted on the wheel chair, the proposed
system could be used in known environments. For exam-
ple, an autonomous wheel chair could be told to go to
a specific building on a college campus from any location
on campus. The person can go to his or her next class with
little e ort.

UGVs have been tested recently in the DARPA Grand
Challenge [10] and have been featured in many sci-fi
movies. These vehicles could be used in industry or by the
average commuter. For example, a self-driving truck
could be used to haul salt out of a salt mine. Some of
these large trucks are expensive so that they must be run
24 hours a day in order to recoup the cost of the vehicle.
An automated driving system could help improve the
effciency.

These vehicles will most likely rely on GPS for long
distance traveling, but will not work well in areas where
the GPS signal is low or in construction or mining sites
such as a salt mine. Therefore, another system will have
to be used to help localize the vehicles for everyday use.

Related works are described in this section to provide
a brief background of some of the projects that have done
research in the area of localization and mapping.

There are several robots that use localization as a key
part of their navigation. DERVISH was designed by re-
searches at Stanford University and won the Office Deli-
very event of the 1994 Robot Competition and Exhibition
[23].

DERVISH was an indoor operating robot and used so-
nar as its main method of sensing the world. The sonar
was placed so that it could detect both short objects and
tall objects like a shelf that it might not fit under. For the
competition, each robot was given a topological map of
the office and a goal room that had two different doors to
enter.

A Markov probabilistic algorithm was used to deter-
mine its location based on features that DERVISH would
detect, such as open and closed doors, hallways, foyers,
and walls. A probability table was given for each of the
features that gave the likelihood of detecting each fea-
ture when that feature appeared, as well as the likelihood
of detecting it as another feature. For instance, the pro-
bability of detecting an open door as an open door was
0.9, and the probability of detecting it as a wall was 0.05.
With five features, the table had 25 probabilities.

The robot did not use odometry; it used events to de-

1.2.2. Service Robots

Uninhabited Ground Vehicles (UGV)

2.1. Mobile Robotics

2. Related Work
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with significantly more people.
Localization still relied on a laser range finder as the

main sensor, but a camera, which pointed at the ceiling,
was used to augment the system because of the wide-
open spaces. A texture map of the ceiling was created and
this was used to localize using the camera.

Minerva also had the ability to learn its maps from
scratch whereas Rhino was given a manually created map
with no ability to create its own.

At the University of Amsterdam an active appearance-
based method has been used for localization of a robot
named Lino [24]. Active systems have some control over
the navigation of the robot in order to move to a location
to make the system more certain about its location. For
example, moving closer to a land-mark in order to be
certain about which object it is, and therefore being more
certain about its position would be an active system.The
system uses a Monte Carlo proba-bilistic algorithm with
stereo cameras on a pan-tilt device as the main sensors.
Because appearance-based techniques can have trouble
localizing in dynamic environments, their approach is to
move the stereo head to look at a location that has not
changed as much. Their appearance-based technique is
based on using disparity maps. The disparity map is
a two-dimensional depth map similar to that of a laser
rangefinder one-dimensional map, but with one more di-
mension. Features can be selected from the disparity map
and compared with the disparity maps that are stored in
the map of the environment, similar to a map-matching
technique.

They found that edges extracted as features work well
for dealing with illumination changes in the environ-
ment. Using this approach, along with the active vision
technique of looking for a less changed location makes
for a robust algorithm that works well. Because the sys-
tem is dependent on depth maps, this system may not
work as well in all outdoor areas. Outdoor areas that have
lots of structures should work, however.

An appearance-based method that is insensitive to
illumination changes is proposed in [16]. The researchers
use an omni-directional camera in order to view more of
the environment at a time.

This gives more features to compare with a map at any
given time.

Eigenimages [21] are used to define the environment
in this method. Eigenimages represent a set of training
images in an eigenspace. If the images are highly cor-
related, the dimension can be reduced significantly using
principle component analysis. Images that are not part of
the training set can be projected onto the eigenspace.
The coefficients from this projection are compared with
those of the training set by determining the smallest
angle between them (using a dot product).

Researchers at Carnegie Mellon University have deve-
loped an appearance-based approach that also uses an
omni-directional or panoramic camera [31]. A topolo-
gical map is used and defines the locations of the images.
Training images are taken by using a camera to retrieve
images while going through the environment, and grou-
ped later into their locations. Color histograms are crea-

2.2. Appearance-Based Localization

termine when to update its state. An event happened
when the sonar detected one of the features listed. When
an open door was detected, the Markov algorithm upda-
ted every possible state. Every state must be updated be-
cause the sonar might have missed detecting some featu-
res. When a feature was detected, the robot was possibly
in a new node. Without odometry, it was possible to move
a long ways and miss several features.

Researchers at the University of Bonn, Aachen Uni-
versity of Technology, and Carnegie Mellon University
worked together to design Rhino, which was deployed at
the Deutches Museum in Bonn, Germany [7]. The robot
used four sensor systems: laser, sonar, infrared, and tac-
tile. It relied on the laser range finder for localization.
The software consisted of 25 modules, which ran on three
on-board PCs, and three SUN workstations, which were
on-board.

The localization system used a metric map and the
Markov algorithm. Because the robot was deployed in
a museum, the people surrounding the robot made the
environment very dynamic. This violated the Markov as-
sumption of a static environment. Therefore, filters were
used to sort the measurements into corrupt and uncor-
rupted categories. It did this by determining if the mea-
surement increased or decreased the certainty of the ro-
bot. Measurements that did not increase the certainty
were assumed to be corrupt and were not used to update
the belief.

An occupancy grid map was used as the metric map.
The map approximated the probability that a grid on
a discretized approximation of the environment was oc-
cupied. The map was discretized into 2D grids, which de-
termined how fine grain of accuracy was needed.

Afterwards, a variation of the Markov algorithm, cal-
led the Dynamic Markov Localization (DML) algorithm [8]
was implemented for the robot. This algorithm differed in
that it attempted to perform both position tracking and
global localization. It performed position tracking by
reducing the amount of state space that the algorithm
had to search over. In situations where the robot was
almost certain about its position, i.e., the distribution
was centered around one location, the remaining states
had extremely small probabilities. DML used an octree to
represent the state space, where states with extremely
small probabilities (less than a threshold) were grouped
together. An octree is a struc-ture that spatially divides
a three-dimensional space into cubes of varying size into
a tree-like structure. The states in this grouping were
updated only once, applying the same update to every
one.

The algorithm also simultaneously calculated the li-
kelihood that the robot's position was not contained in
the currently considered states. If this happened, more
states could be considered by changing the octree. This
allowed for a dynamically evolving state space that was
considered based on the certainty of the robot, thus im-
proving efficiency when the robot was certain about its
location.

Minerva, created after Rhino, is the second version of
a museum tour guide robot [28]. It was deployed in the
Smithsonian and required some improvements in order to
successfully operate in the significantly larger museum
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ted from the images from two color spaces, RGB (red,
green, blue) and HLS (hue, lumi-nance, saturation). Color
histograms are vectors that count the number of specific
pixel colors that appear in the image: one vector for each
band of color. A nearest-neighbor approach is used for
comparing images. The color histogram created from the
current image in the environment is compared to only the
location where the robot is believed to be in, and its
neighbors. A voting mechanism is used to determine to
which location the image belongs.

This algorithm is similar to a non-probabilistic posi-
tion-tracking algorithm in that it cannot recover from
getting lost and it cannot perform global localization, as
it must know its initial location. The algorithm was tested
over a small area that included both outdoor and indoor
locations, and it was reported to have performed reason-
ably well.

3. Approach
The approach proposed in this work is to use only

a camera to perform localization in multiple environments
including indoors, outdoors, and at polar campsites in
Greenland and Antarctica. A topological map is used whe-
re each node in the map is represented by a set of images.
The problem then becomes to recognize specific locations
within the topological map based in images captured from
the camera on the robot. A probabilistic localization sys-
tem was designed that uses appearance-based features
and a hidden Markov model as the classifier to attempt to
solve this problem.

The topological map was created manually of an area
inside and outside a single building. Each node of the map
is a set of images that are representative of the location.
After the images for the map are acquired, the appear-
ance-based features are extracted and modeled using
a Gaussian mixture model. After this step, the topological
map is represented by a set of Gaussian mixture models.
The likelihood that an image is part of a specific node in
the map is generated by extracting the proper feature
from the image and applying it to the Gaussian mixture
model. All the processing in this work was done offline to
simplify the evaluation.

The appearance-based method uses the appearance
or texture of an image in order to recognize a location.
Appearance based methods have been used in [31], [24],
[18]. Instead of using a geometric (explicit) represen-
tation where the images are used to find walls or objects,
the images themselves represent the model of the envi-
ronment.

Some of the feature descriptors that were used include
color and gray histograms [14], Hu Moments [14], and
eigenimages [21, [22].

Using pixel values in images that range from 0-255,
a gray histogram is a count of all of the pixel values in the
image. The color histogram is the same, except the count
exists for all three bands of the RGB images. The histo-
gram in this case is actually three separate histograms.

Images can also be described using statistical mo-
ments such as mean, variance, skewness, and higher order
moments. [15] describes a set of seven moments that are

3.1. Appearance-Based Method

invariant to rotation, translation, and scale changes.
These moments are referred to as Hu Moments.

Eigenimages are a set of basis images that are used re-
duce the dimensionality of an image. The eigenimages are
created from a set of images. Images are projected onto
the eigenimages to give adescriptor that is much smaller
than the image itself.

A Gaussian mixture model (GMM) was used to model
the feature descriptors. A Gaussian mixture consists of
a linear combination of Gaussians (normal distributions).
Each Gaussian in the mixture has its own weight and the
final probability is given by linearly combining the results
of each Gaussian in the mixture. The EM [11], [26] algo-
rithm is used to generate the parameters of the mixture,
which include the mean, covariance, and weight. The pro-
gram described in [6] was used to generate the Gaussian
mixture models for this work and also gives a good des-
cription of the Gaussian mixture model. The GMM is used
to generate the likelihood probabilities in this testing, as
described in Equation 1.

(1)

Where is the current feature, is the current location,
is the number of Gaussians in the mixture, is the weight
of the Gaussian, and is the Gaussian in the
mixture. This is the probability of seeing the feature at
location .

A GMM is typically used to model data where the nor-
mal distribution does not work well by itself. The GMM can
work well even in cases where the data is not normal, or
the assumption of normal data is incorrect.

The hidden Markov model (HMM) is one of the simplest
Bayes networks. It consists of a set of N states, the initial
probability distribution, and a set of transition proba-
bilities. The HMM can be used to model temporal data. It
has been used extensively for speech recognition [25].
The HMM relies on the Markov assumption, that the value
of the next state is dependent only on the value of the
current state [26].

The hidden Markov model-decoding algorithm descri-
bed in [12] on page 135 was used for determining which
node in the map has the highest probability. This deco-
ding problem is that of determining the sequence of hid-
den states given a sequence of visible states. The visible
states in this case are images captured from a camera and
the hidden states are the locations in the map.

The results for the localization are compared with tho-
se of two other simple classifiers, ML (maximum likeli-
hood) and a variation of the HMM where all the transition
probabilities are equal, thus turning o the hidden Markov
model and acting more like the naive Bayes classifier.

3.1.1. Gaussian Mixture Model

x q k
w

k N k
x

q
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k

3.2. Hidden Markov Model

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 4,     N° 1     2010

P (X = x|Q = q) = w * N� k k
k

Articles 71



Table 1. Transition weights for the Hidden Markov Model. All
weights are based on the shortest distance from one node to
another. The weight is the total probability given to all
nodes at a given distance. These values are the same values
used for this work. These are based on a zero mean Gaussian
with a variance of 1.0 and minimum probability of 0.001.

Distance Weight
0 1.000
1 0.607
2 0.135
3 0.011

4 0.001

The ML classifier selects the node with the highest
likelihood (from the GMM) and has no memory, see Equa-
tion 2. In contrast, the naive Bayes algorithm stores
a posterior probability. The likelihood for a node is multi-
plied by its posterior, and then the node with the highest
posterior value, maximum a posterior (MAP), is chosen as
the selected node, see Equation 3.

(2)

(3)

The transition probability was modeled using a zero
mean normal distribution based on the distances of nodes
in the topological map. The variance was a preset cons-
tant parameter, 1.0 in this case. A minimum value was set
so that once the probability went below that minimum
value; all distances from that point were given the same
minimum value. These values represent the probability of
moving from one node to another node, with the highest

�

ML Location [ ]

Naive Bayes Location
[ ]

= argmax P (X = x|Q = q)

=
argmax áP (X = x|Q = q)* P (Q)

3.2.1. Transition Probability

probability being to stay in the current location; and the
probabilities progressively getting lower the further away
the node is from the current node.

The probability given for a specific distance was used
as a total weight value for all nodes of that distance to
add up to. For example, if there are four adjacent nodes
to node , and the probability of being at distance one is
0.80, then the probability of moving from node to mode
is 0.20. After determining the probabilities for the transi-
tion from node to every node in the map, the values are
normalized to 1.0.

Using the probabilities, as a total weight is important
because it is possible to have the probability of moving to
another location be higher than staying in the current
location. This can happen ifthe current location has many
connections. This would mean that each of these connec-
tions is at distance 1.0. If the probability of moving to
a location of distance 1.0 is 0.8, then the total probability
of moving to an adjacent location can be higher than not
moving, which is not desirable. Therefore, normalizing
the total probability of all the adjacent locations to 0.8
helps to prevent this from occurring. The actual distance
weights used in this work are included in Table 1.

The distance is determined by the fewest number of
connections from one node to another. This algorithm
requires finding the shortest distance to other nodes on
the map. Moreover, depending on the variance and the
minimum probability selected, the distances only had to
be calculated for the nodes up to a small distance (three
in this case).

Two different maps were used to test the system. The
first map, see Figure 1, was a smaller version of the se-
cond, not including many of the outdoor locations. The
locations to use in the map are from one building. They

j
i

i j

i

3.3. Topological Maps
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Fig. 1. Adjacency graph representing the first topological map used for evaluation. The building has three floors, but the
map was created from locations on only the first and third floors.
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were chosen based on availability and accessibility. Once
a location was chosen, a robot platform with a camera was
driven using remote control through the areas while cap-
turing and saving all images. These images were grouped
together by location and became the database for all tests
performed. The first map has 22 locations made up of over
22,000 images total. The map contains 12 offices, 10 hal-
lway locations, and 1 elevator that span over two floors
of the three-floor building. Figures 3, 4, 5, and 6 show
a sample of some of the images used to make up inside
nodes 334, 335, Hallway 1, and Hallway 2, respectively.
Each image was captured at a resolution of 640x240.

The second map has four more nodes than the first.
The map was built using over 26,000 images. These added
nodes are all outside locations, shown in Figure 2 as Walk-
way 1, Walkway 2, Walkway 3, and Walkway 4. These nodes
are connected from the patio back to the front entryway,

1P2. These were added because the single outside loca-
tion from the first map, Figure 1, does not give a good in-
dication of how well the system works outdoors. Figures 7
to 9 show images from some of the added outside loca-
tions.

Several feature descriptors were used to test the
system, color and gray histograms [14], Hu Moments [15],
and eigenimages [21], [22]. Variants of the color and gray
histograms were also used. Table 3 includes a list of all the
descriptors used for this work.

In order to get a single descriptor for the color histo-
grams from the RGB images, a histogram for each band of
the RGB image is obtained separately then appended to
the end of the previous one. Therefore, each color histo-
gram is three times the size of its corresponding gray his-

3.4. Features
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Fig. 2. Adjacency graph representing the second topological map used for evaluation. This map is broken into three
different general locations: first floor, third floor, and the outside areas.

Fig. 3. Room 334 sample images.
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togram. A variation that was used was to divide each ima-
ge up into equally sized columns and rows. Then a separa-
te histogram (color or gray) was calculated for each sec-
tion of the image, again appending each descriptor to the
end of the previous. This was done on sizes of 2x2 and
3x3.

Also, the number of bins used to calculate the histo-
grams could be varied. The number of bins determines the
size of the histogram. For example, 256 bins can be used
for an image with pixel values ranging from 0 to 256.
However, 128 bins can also be used causing a loss of infor-
mation. This combines the pixel values of zero and one
into a single bin in the histogram. This happens through-

out the entire range of the histogram in this case. This is
mainly used to reduce the amount the information in the
histogram.

The histograms of the 1x1 and the 2x2 all used 256
bins, and the 3x3 descriptor was calculated on 128 bins in
order to try and reduce the size of the descriptor. Table 2
lists all the variations of the histograms that were used for
testing.

Two versions of the Hu Moments descriptor were used.
One descriptor is calculated from a gray scale image, the
other calculated each of the seven Hu Moments on each
band of the RGB image separately, and appended them
similar to the color histograms. Therefore, the color Hu

VOLUME 4,     N° 1     2010

Fig. 4. Room 335 sample images.

Fig. 5. Hallway 1 sample images.
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Moments descriptor was three times the size of the gray
Hu Moments descriptor.

Gray 1 1 256 256
Color 1 1 256 768
Gray 2 2 256 1024
Color 2 2 256 3072
Gray 3 3 128 1152
Color 3 3 128 3456

Table 2. Variations of the color and gray histogram feature
descriptors.

Color/Gray Rows Cols Bins Size

The eigenimage descriptor is described in [22]. This
descriptor uses each image in the training set as a single
vector and principle component analysis is performed to
reduce the size of the descriptor. It was calculated on gray
scale images.

Most of the features used in this work were reduced
using PCA. A suitable number of components had to be
determined that would adequately represent the features
and still allow distinguishing between the features. It was
found [27] that 20 components were sufficient to descri-
be the eigenimage descriptors. The color and gray histo-

3.4.1. Principle Component Analysis

VOLUME 4,     N° 1     2010

Fig. 6. Hallway 2 sample images.

Fig. 7. Walkway 1 sample images.
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grams were reduced to a similar number, i.e. 25. Because
this number worked well, testing with a higher number
was not performed. However, it is intuitive that the smal-
lest number as possible that still allows for recognition
should be used. Extremely high dimension Gaussian mix-
tures can cause problems for the Hidden Markov Model
[30].

The numbers used in this work are not optimum num-
bers that provide the best solution. They were numbers
that seemed to perform well for this approach. The num-
bers used can depend on several factors, including the
size of the original descriptor and the number of images,

or the size of the map. Table 3 lists the sizes of each
feature descriptor used, before and after PCA. Three of the
descriptors, the Hu Moments descriptors and the eigeni-
mage descriptor were not changed in this step. The Hu
Moments descriptors were small enough, that a reduction
of information was not necessary. The eigenimage des-
criptor already uses PCA to reduce its dimensionality; the-
refore it was not necessary to reduce it again.
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Fig. 8. Walkway 2 sample images.

Fig. 9. Walkway 3 sample images.
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Table 3. Feature descriptor descriptions. The size of the des-
criptors before and after PCA has been performed.

1 Gray Histogram 256 25
1x1 with 256 bins

2 Color Histogram 768 25
1x1 with 256 bins

3 Gray Histogram 1024 25
2x2 with 256 bins

4 Color Histogram 3072 25
2x2 with 256 bins

5 Gray Histogram 1152 25
3x3 with 128 bins

6 Color Histogram 3456 25
3x3 with 128 bins

7 Hu Moments 7 7
(Gray Image)

8 Hu Moments 21 21
(RGB image)

9 Eigenimages 20 20

The tenfold testing procedure was used to evaluate
the system. The image database was broken into ten ran-
dom sets. Each set needed to contain images from every
location in the map, therefore each location was broken
into ten random sets. These sets were combined with the
sets from other locations to create an entire set of images.

Each of the sets was selected to be used as a test set
with the other nine being used as its training set. Ten
separate training and test sets were used to test the sys-
tem. Every test was then run ten times, using each diffe-
rent test set with its corresponding training data. The re-
sults from each of the ten runs were averaged together to
get an overall result. All of the results given from this pa-
per are the result of the ten fold experiments.

As was stated earlier, most of the processing was done
offline. The extracting of features, performing PCA, and
modeling the features with a Gaussian mixture model we-
re all done o ine. The images used for the tests were taken
from the test set. A predetermined route was selected.
Then a random number of images were selected from the
pool of images for the specific locations to represent the
images that would be captured from the camera as if the
robot were moving through the map. The features are
then extracted from these images, their size is reduced
using the eigenvectors from the PCA step on the training
set, and these features are written to a file to be classified
in the order they were selected, allowing the same featu-
res to be classified several times on different tests. These
steps are performed once for every test set.

The results from three different classifiers are given:
hidden Markov model, maximum likelihood, and an appro-
ach similar to the naive Bayes classifier, described previo-
usly in Section 3.2.

The results from seven different tests are given. The
first three tests are used to determine how well the system
solves the global localization problem through a normal
traversal of the first topological map. Tests four and five
are used to determine how well the system can handle the
kidnapped robot problem. This problem is similar to the

Descriptor Original Size Size after PCA

4. Evaluation

global localization problem where the robot is placed in
some random location in the map and it must determine
its location, except that the robot is transported to a new
location in a completely different part of the map after
already localizing itself. The robot must be able to 'un-
learn' where it believes it is at, and then 'relocalize' itself
to the new location. The last two tests are similar to the
first three, but are performed on the second topological
map and are designed to test moving outdoors.

Table 4. Nodes visited for each test run in the order they
were visited. Four and five were used for the kidnapped
robot tests. The asterisk represents the node in which the
robot was 'teleported' to another location not directly ad-
jacent to its previous. Six and seven were used for the
outdoor tests.
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Test

One

Two

Three

Four

Five

Six

Seven

Nodes Visited (in order)

O343C, O343D, O343B, O343D, HALLWAY 1,
3BH1, HALLWAY 2, HALLWAY 3, HALLWAY 2,
O320

O343C, O343D, O343B, O343D, HALLWAY 1,
O337, HALLWAY 1, 3BH1, O334, 3BH1,
CATWALK3, ELEVATOR, 1P2, ENTRY WAY,
BACK DOOR, PATIO, BACK DOOR, ENTRYWAY

HALLWAY 3, HALLWAY 2, O326, HALLWAY 2,
O317, HALLWAY 2, O318, HALLWAY 2, O320,
HALLWAY 2, O327, HALLWAY 2, 3BH1,
HALLWAY 1, O337, HALLWAY 1, O344W,
HALLWAY 1, O345, HALLWAY 1, O343D,
O343C, O343D, O343B,O343D, HALLWAY 1,
3BH1, CATWALK3, ELEVATOR, 1P2, ENTRY
WAY, BACK DOOR, PATIO

O343C, O343D, O343B, O343D, HALLWAY 1,
1P2*, ENTRY, BACK DOOR, PATIO, BACK
DOOR

O327, HALLWAY 2, O317, HALLWAY 2, O327,
O327, BACK DOOR*, PATIO, BASK DOOR,
ENTRY, 1P2, ELEVATOR, CATWALK3, 3BH1,
HALLWAY 2, O327

HALLWAY 3, HALLWAY 2, O326, HALLWAY 2,
O317, HALLWAY 2, O318, HALLWAY 2, O320,
HALLWAY 2, O327, HALLWAY 2, 3BH1,
HALLWAY 1, O337, HALLWAY 1, O344W,
HALLWAY 1, O345, HALLWAY 1, O343D,
O343C, O343D, O343B, O343D, HALLWAY 1,
3BH1, CATWALK3, ELEVATOR, 1P2, ENTRY
WAY, BACK DOOR, PATIO, WALKWAY 1,
WALKWAY 2, WALKWAY 3, WALKWAY 4

PATIO, WALKWAY 1, WALKWAY 2, WALKWAY
3, WALKWAY 4, WALKWAY 3, WALKWAY 2,
WALKWAY 1, PATIO
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Fig. 10. Topological test one: position accuracy.

Fig. 11. Topological test two: position accuracy.

Fig. 12. Topological test three: position accuracy.
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4.1. Testing Results
The results for the Bayes like classifier are almost

identical to those of the maximum likelihood results. This
is because the likelihood values dominate the posterior
value because most of the likelihoods are zero or near
zero. This resulted in the posterior value being a minimum
value for most of the locations. Then the (usually) single
node that has likelihood greater than zero dominates the
results, causing the maximum a posterior location to be
equal to the maximum likelihood location. Because of
this, the results from this classifier are not discussed in
any detail, but they are provided in all the tables of
results.

Table 4 gives the locations visited for each test run.
Test one was the shortest, visiting ten locations: five
office locations and five hallway locations. Test two was
a longer test, visiting 18 nodes: seven of those being
office locations. This test run also visited the outdoor
location, Patio. The third test was the longest, visiting
every node in the map: 33 locations total, 14 office
locations. The locations for the last two tests are less
important, but it is easy to tell the route that was taken
before and after the robot was 'teleported.' The asterisk
represents the loca-tion where the robot was teleported.
The teleported node was far away from its previous node
so that the system would not have any substantial proba-
bility of moving from its previous location to the telepor-
ted location. This is important because the system con-
tains higher probabilities for moving to locations that are
closer to the current location. Figure 1 includes a refe-
rence of the locations visited.

Figures 10 to 12 summarize the results for the location
accuracy for the first three tests. The results shown are
the average of all ten tests. All three tests showed that
the HMM proved to give the best results, with several clas-
sifying over 92% correctly. The Hu Moments (Gray) clas-
sifier proved to be inadequate for these tests, and the Hu
Moments (Color) feature was much better, but still inade-
quate to perform localization. The HMM tested better than
the ML in every case.

The best results for Test one are obtained using the
Color Histogram 3x3 feature, which classified over 95%
correctly. However, this result was only slightly better
than those from several other features including: Color

Histogram 1x1, Color Histogram 2x2, Gray Histogram 3x3,
and Gray Histogram 2x2. All of these provided excellent
results. The best results for the ML (Maximum Likelihood)
classifier for this test are from the Color Histogram 1x1
feature, correctly classifying over 88% or the images cor-
rectly. Again, several others had results similar to that of
the Color Histogram 1x1: Color Histogram 3x3, Gray His-
toram 3x3, and Color Histogram 2x2.

The best results from test two resulted from using the
Color Histogram 1x1, 95%, and Color Histogram 2x2, 87%,
for the HMM and ML, respectively. Test three best results
are from the Color Histogram 1x1 feature for both HMM,
95%, and ML, 88%.

The Color and Gray Histograms for these three tests
performed better than the other features, with the Gray
1x1 feature performing the worst of these. In most cases,
the Color Histogram outperforms its corresponding Gray
Histogram, however, the results are usually too close to
be well differentiated by these tests. Several of the results
show that many of the Color and Gray Histogram features
classify over 95% correctly. As a result, a single feature
cannot be chosen as giving the best results overall. The
results do show that the histogram features do perform
adequately for classifying the indoor locations.

The HMM model still requires that the ML classify a suf-
ficient number of the locations correctly in order to per-
form adequately. The greatest improvement on the ML
results is from the Hu Moments RGB feature in Test three
where the ML classifies over 28% correctly and the HMM
classifies over 62% correctly. When the ML jumps around,
the nodes with the most connections tend to gain the
higher probabilities. However, the Color and Gray Histo-
gram features are usually better than its corresponding ML
results by around 10%, which is significantly higher.

The ML classifier solves the global localization pro-
blem faster than the HMM as expected, because of its lack
of 'memory.' However, the HMM was usually only some-
what worse than the ML, and was still very fast. Figures 13
to 15 show the summary of the localization time results.
The time is measures in number of images. Because the
experiments were performed offline, and the images can
be captured at different rates, time in seconds does not
give an accurate assessment.
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Fig. 13. Topological test one: localization time.
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The number of images needed to be by the system gi-
ves an accurate assessment of how long it takes to localize
the system. With the exception of the Hu Moments fea-
tures, these tests show that the global localization time is
sufficient for use on an autonomous mobile robot, usually
requiring only two to three images before the system has
determined where it is in the map.

The Kidnapped Robot Problem tests (tests four and
five), showed that again, because of its lack of memory,
ML performed the best, as was expected, and that the
HMM was not very far behind. Figures 16 and 17 show the
results of the kidnapped robot tests. The results show the
number of images, like the global localization results, re-
quired to relocalize after being teleported to another lo-
cation. The results for all but the Hu Moments features
show very good performance. The Hu Moments features
again performed inadequately.

Tests six and seven, were performed in the second to-
pological map, Figure 2. These were meant to test how
well the system performs outdoors. Test six visited every
node in the map, similar to Test three for the other map.
Test seven visited only the outside locations in the map,
visiting all but one of them twice. The number of features
used in these tests was reduced to the ones that perfor-

med the best in the previous tests. The features used were
all histogram features, numbers 2, 3, 4, and 5 listed in
Figure 3.

Both of these tests performed similar to those of the
previous tests. Figures 18 to 21 show the summary of the
results. Each feature was classified correctly by the HMM
over 95% of the time for

Test six, and over 94% for Test seven. The localization
times for both tests were similar to those of the other map
as well.

The experimental results from the tests illustrate that
the appearance-based localization method is a viable ap-
proach. The method works extremely well, at times over
95% of the time, on these experiments. These experi-
ments also show the ability of the system to recognize
several locations that look very similar. The hallways, for
example, Figures 5 and 6, where the tests were performed
are extremely similar, in color, size, and structure. The
HMM proved to work very well for this system, improving
the ML results by around 10%. These results show this
system to have merits, in both indoor and outdoor en-
vironments.

5. Conclusion
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Fig. 14. Topological test two: localization time.

Fig. 15. Topological test three: localization time.
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Fig. 16. Topological test four: kidnapped robot problem.

Fig. 17. Topological test five: kidnapped robot problem.

Fig. 18. Topological test six: position accuracy.
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Fig. 19. Topological test seven: position accuracy.

Fig. 20. Topological test six: localization time.

Fig. 21. Topological test seven: localization time.
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The features used in these tests were not complex and
can be calculated quickly, allowing this system to run in
real time. However, as stated previously, all the tests were
done offline in order to simplify evaluation and allow for
multiple tests to be performed using the same images.

The system described determines only the location in
a topological map. See [1] to how the system can be used
to determine the location at a finer scale as well as the
orientation.

The proposed approach was evaluated using a map
with 26 locations. A larger map will be needed to get
a better determination of how well the system works for
larger areas such as a college campus environment. The
system also needs to be tested on maps of base camps in
Antarctica and Greenland again, as there were not enough
images of these camps to get sufficient results.

Another limitation is that the system was not tested
under significantly varying lighting condition or other
noise. The lighting condition inside the building does not
change much, and the outdoor locations were all imaged
under the same lighting conditions. Also, there was never
a large crowd of people at the time the images were being
captured. Of course, images that consist of only people
could potentially cause the system to lose its position.

The database has not yet been built for multiple
lighting conditions, and the results from how well the
system works under the varying lighting conditions would
be of interest. The lighting conditions in Greenland and
Antarctica do vary as well from cloud cover and the
direction of the light. As implied however, the simplest
solution to varying lighting conditions is to capture
images for the training set at different times of the day.

The system also relied on a single feature to localize.
This was sufficient for the environments tested, but other
environments may require a combination of weighted
features or different features altogether. Not all features
could be tested, and indeed there exist many more than
were described in this work.

The future work will be based on testing the system in
Greenland and Antarctica and increasing the size of the
map. In these environments, other features may need to
be tested in order to localize sufficiently. Also, the area
must include some structure or texture that does not dis-
appear after a short time. So the system in Antarctica and
Greenland would be limited to within camps where there
are some structures.

This work was based on extracting a single feature
from images. For environments such as in the polar re-
gions, a single feature may not be sufficient. Work will
also be done in determining if combining features results
in better performance, especially in the polar regions
where the images contain little texture.

Maps of larger environments, such as that of a college
campus, will also be created to evaluate the system. The
system could potentially be used in automobiles to guide
drivers to parking lots near their buildings, or in self-
driving automobiles.

5.1. Limitations

5.2. Future Work

5.3. PRISM/CReSIS Robotics
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