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Abstract:
Socio‐cognitive computing is a paradigm developed for
the last several years in our research group. It consists
of introducing mechanisms inspired by inter‐individual
learning and cognition into metaheuristics. Different ver‐
sions of the paradigm have been successfully applied
in hybridizing Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Genetic Algorithms, Differ‐
ential Evolution, and Evolutionary Multi‐agent System
(EMAS) metaheuristics. In this paper, we have followed
our previous experiences in order to propose a novel
mutation based on socio‐cognitivemechanism and test it
based on Evolution Strategy (ES). The newly constructed
versions were applied to popular benchmarks and com‐
pared with their reference versions.

Keywords: metaheuristics, socio‐cognitive computing,
global optimization

1. Introduction
Tackling difϐicult optimization problems requires

using metaheuristics [1], and very often it is needed
to create new ones [2], i.e. bymodifying or hybridizing
the existing algorithms [3].

Although Sorensen has criticized the development
of new metaheuristics [4], we contend that using
metaphors in our daily work [5] not only fosters cre‐
ativity but alsomay result in the discovery of truly new
solutions of considered issues or novelmechanisms to
solve them automatically.

Because classic metaheuritics are frequently
inspired by nature, their further modiϐications
frequently combine different phenomena observed in
the real world.

One direction of such modiϐications comes from
the very inϐluential Social‐Cognitive Theory intro‐
duced by Bandura [6]. According to this theory,
some of a person’s knowledge can be directly linked
to observing others during their social interactions,
experiences, and external media inϐluences. [7]. Thus,
despite learning only through her own trial and error,
one can reach her goals sooner thanks to such obser‐
vation [8].

We have already introduced dedicated
mechanisms rooted in Social‐Cognitive Theory to
selected metaheuristics (socio‐cognitive ACO [9] and

socio‐cognitive PSO [10]), obtaining good results
compared to the reference algorithms.

Presently, we focus on the group of evolutionary
metaheuristics, and by modifying chosen algorithms
from this group, we aim to develop a universal mech‐
anism for variation operators that would embody the
idea of socio‐cognitive learning mechanisms.

The main contribution of this paper is a socio‐
cognitively inspired mutation mechanism, that makes
it possible to exchange the information among the
individuals in evolutionary algorithms. The proof‐of‐
concept of this mechanism was introduced in the
research paper in 2021 [11] and was redesigned
and reimplemented based on the results achieved.
The efϐiciency and efϐicacy of the new version of
the algorithms are tested using well‐known high‐
dimensional, multimodal benchmark functions. The
proposed method is based on copying certain parts
of the genotypes (thus passing the knowledge) from
the better ones, and avoiding the parts of solutions
of the worst ones. In this paper, we consider well‐
known (𝜇 + 𝜆) ES, but we believe that our muta‐
tion mechanism may be used in a broader range of
algorithms.

We start with the reference to state‐of‐the‐art
showing the existing modiϐications of metaheuristics,
in particular evolution strategies. Then we show the
novel method for introducing socio‐cognitive mecha‐
nisms into (𝜇+𝜆) evolution strategy. We provide rele‐
vant experimental results and, in the end, we conclude
our paper showing the summary and the future work
plans.

2. Related Non‐classic Evolutionary
Algorithms
There are several metaheuristic discourses in

which this work can be anchored. On themost general
level (considering the architecture of the entire algo‐
rithm), it can be treated as a kind of hybrid algorithm
[12] in the same sense that amemetic algorithm is one
[13] and many other similar algorithms, developed
in the research group of the Authors [14–16]. The
majority of memetic algorithms are based on genetic
algorithm, and have introduced some local search
or heuristic learning mechanisms. Unlike them, the
described algorithm is based on another metaheuris‐
tic of the evolutionary computation group, namely the
evolution strategy [17,18].
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The similarity lies in the fact that a novel mecha‐
nism (i.e., socio‐cognitive mutation operator) is intro‐
duced in between standard steps of the algorithm. Our
work should also be placed in the context of various
modiϐied or hybrid ESs. The possible modiϐications of
classic ESs range from simple tuning or manipulation
of control parameters such as mutation strength or
population size (step‐size) [19–21], through covari‐
ance matrix adaptation evolution strategy (CMA‐ES)
[22] to heterogeneous hybrids of ES, which are often
focused on particular application, e.g. vehicle routing
problem [23], optimization of engineering, and con‐
struction problems [24, 25] and the number of which
is apparently not very high.

Taking into account the level of the variation oper‐
ators itself, our postulated operator can be com‐
pared to the one present in the differential evolution
metaheuristic [26]. The characteristic trait of DE is
the mutation variation operator, which operates on
parameter vectorswith scaled population‐derived dif‐
ference vectors. In this sense, it is not just a randomly
performing operator, as in traditional EAs and ESs, but
it utilizes the information about current population,
especially in the schemes having “best” in the names,
such as 𝐷𝐸/𝑏𝑒𝑠𝑡/1 and 𝐷𝐸/𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡/1
that use the best solution to deϐine mutation direc‐
tions [27]. A similar analogy is present between classic
mutation and our socio‐cognitive mutation operator.
The mechanics of the new operator can be related to
the well‐known TOPSIS (Technique for Order of Pref‐
erence by Similarity to Ideal Solution) method [28].
TOPSIS is based on the idea that the chosen alterna‐
tive should be the one with the shortest geometric
distance from the positive ideal solution and the one
with the greatest geometric distance to the negative
ideal solution.

As already mentioned in the Introduction, we
root our work in a discourse of socio‐cognitively
inspired algorithms. The ϐirst objective of introduc‐
ing sociocognitive mechanism into evolution strate‐
gies served as a proof‐of‐concept that turned out to
be promising [11], but pointed out several dimen‐
sions for major improvements. The ϐirst conclusion
was that these mechanisms that operate towards
better solutions give better results than operators
based onmoving away from the worst individuals. We
decided that the core of our idea was a synergy of
these two directions, and that the second part must
be totally redesigned in order to work as intended.
Otherwise, it would be too straightforward analogy
with𝐷𝐸/𝑏𝑒𝑠𝑡/1 and other socio‐cognitive algorithms
described in [29] and [30], so the novelty would be
minimal. The second lesson from the previous attempt
to modify ES was that the algorithm itself should have
amoderate level of complexity in order to be a base for
a successful socio‐cognitive modiϐication. The experi‐
ments performed on the (1 + 1) version of ES, as well
as the (𝜇, 𝜆) version were not as successful as those
based on the (𝜇 + 𝜆) version of the algorithm, which
gave better results in all the benchmarks tested, in
contradiction to the (𝜇, 𝜆) version that was better only
in one of them. Sowe decided that it will be the best to
stick to the (𝜇 + 𝜆) version for our further purposes.

3. Socio‐cognitive (𝝁 + 𝝀) Evolution Strategy
The classic algorithm of ES can be described as

follows:
1) Initialize parent population 𝑃𝜇 = {𝑖1, … , 𝑖𝜇}. Each

of the individuals can be described as follows: 𝐼 ∋
𝑖𝑘 = {𝑔𝑘,1, … , 𝑔𝑘,𝑑 , 𝑠𝑘,1, … , 𝑠𝑘,𝑑}, 𝑘, 𝑑 ∈ ℕ stands for
an individual containing a genotype 𝑔𝑘,1, … , 𝑔𝑘,𝑑
representing objective parameters, and associated
𝑠𝑘,1, … , 𝑠𝑘,𝑑 mutation strategy parameters that will
be adapted inorder to guide the search. Thedimen‐
sionality of the considered problem is 𝑑. Later, we
use the notation 𝑖𝑘,𝑙 to refer to 𝑔𝑘,𝑙 , which is 𝑙-th
gene of 𝑘-th genotype.

2) Generate 𝜆 offspring individuals forming the off‐
spring population 𝑃𝜆 = {𝑖1, … , 𝑖𝜆} in the following
procedure:
‐ Randomly select 𝜚 parents from𝑃𝜇 (if 𝜚 = 𝜇, then
take all of them).

‐ Recombine the𝜚 selectedparents (traditionally a
pair) to form a recombinant individual 𝑖𝑟 , using
any possible recombinationmeans (traditionally
averaging crossover operator was used).

‐ Mutate the strategy parameter set 𝑠𝑟,1, … , 𝑠𝑟,𝑑 of
the recombinant 𝑖𝑟 (adapting e.g. the mutation
diversities for the next mutation). Traditionally,
mutation is realized by applying a perturbation
based on, for example uniform or Gaussian ran‐
dom distribution or adding or subtracting a cer‐
tain value to (from) a selected gene.

‐ Mutate the objective parameter set 𝑔𝑟,1, … , 𝑔𝑟,𝑑
of the recombinant 𝑖𝑟 using themutated strategy
parameter set to control the statistical proper‐
ties of the object parameter mutation.

3) Select new parent population (using determinis‐
tic truncation selection) from either the offspring
population 𝑃𝜆 (this is referred to as comma‐
selection, usually denoted as “(𝜇, 𝜆)‐selection”), or
the offspring 𝑃𝜆 and parent 𝑃𝜇 population (this is
referred to as plus‐selection, usually denoted as
“(𝜇 + 𝜆)‐selection”).

4) Go to 2. until termination criterion fulϐilled.
We have decided to introduce the socio‐cognitive

mechanisms to the (𝜇 + 𝜆) version of ES. This fol‐
lows from the apparent potential of such mechanisms
developed earlier in [11]. We have studied the updat‐
ing part of the operators applied therein, and intro‐
ducedmodiϐications in order to increase their efϐicacy.

In particular, we have aimed at increasing the
exchange rate of information between the individuals
in current population with the goal of accelerating the
learning rate of algorithm. In order to achieve this, we
split a single mutation step into multiple independent
sequential mutations. The ϐirst mutation is always the
classical operator meant to introduce perturbation to
the solution’s genome. The following operator or mul‐
tiple operators are meant to introduce further modiϐi‐
cations to that solution that are guided by the current
state of population.
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Figure 1. Population trajectory for each algorithm on AckleyProblem 1000. Each vertical slice at given step represents
histogram of joined populations over all evaluation runs with color depicting histogram box count

In our experiments we test and evaluate the fol‐
lowing social mutations:
1) Follow Best:

Out of the top 𝑛 individuals 𝐵1, … , 𝐵𝑛 in current
population randomly select one that will be now
called teacher 𝑇. With probability 𝑝𝑓 , for each of
the currently operated on solution’s 𝑆 genes 𝑠𝑖 ,
assign new value 𝑠𝑖 ← 𝑠𝑖 + 𝛼𝑓(𝑡𝑖 − 𝑠𝑖) where 𝑡𝑖 is
the corresponding gene of 𝑇 and 𝛼𝑓 is follow rate.

2) Follow Best Distinct:
Let each individual 𝐵𝑗 be a sequence of 𝑑 genes
𝐵𝑗 = (𝐵𝑗,1, … , 𝐵𝑗,𝑑). Out of the top 𝑛 individ‐
uals 𝐵1, … , 𝐵𝑛 in current population randomly
select one that will be now called teacher 𝑇.
Across the 𝐵1, … , 𝐵𝑛 individuals calculate the stan‐
dard deviation for each of the gene positions
1,… , 𝑑 resulting in 𝑔1𝑠𝑡𝑑 , … , 𝑔𝑑𝑠𝑡𝑑 where 𝑔𝑖𝑠𝑡𝑑 =
𝑠𝑡𝑑(𝐵1,𝑖 , … , 𝐵𝑛,𝑖). Choose 𝑘 gene positions per‐
forming weighted random selection across 1,… , 𝑑
using 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔1𝑠𝑡𝑑 , … , 𝑔𝑑𝑠𝑡𝑑) as vector of proba‐
bilities. For each of 𝑘 chosen gene positions of the
currently operated on solution’s 𝑆 genes 𝑠𝑖 assign
new value 𝑠𝑖 ← 𝑠𝑖 + 𝛼𝑓(𝑡𝑖 − 𝑠𝑖) where 𝑡𝑖 is the
corresponding gene of 𝑇 and 𝛼𝑓 is follow rate.

3) Repel Worst Gravity:
Out of 𝑛 worst individuals in the current popu‐
lation randomly select one individual 𝐵𝑖𝑤 . While
operating on an individual 𝐵𝑖𝑚 , with probability
𝑝𝑓 , perform the following assignment for every
gene 𝑔: 𝑖𝑚,𝑔 ← 𝑖𝑚,𝑔 + 𝛼𝑟 ⋅

𝑠𝑔𝑛(𝑑𝑔)
𝑑2𝑔

, where 𝑑𝑔 =
(𝑖𝑚,𝑔 − 𝑖𝑤,𝑔) is called a distance in gene 𝑔, 𝑠𝑔𝑛
is a sign function and 𝛼𝑟 is a repel rate. That way
the repel magnitude is inversely proportional to
the squared distance for a given gene, and with a
direction away from the chosen worst individual.

4) Repel Worst Gravity Multistep:
For every individual 𝐵𝑤 from 𝑛 worst individu‐
als in the current population perform the assign‐
ments described above. That way the repel effect
is stronger and more versatile.

4. Experiments
The main aim of the experiments is to verify the

efϐicacy of global optimization (minimization) of the
novel algorithms for the selected benchmark func‐
tions (Ackley, De Jong, Rastrigin, and Griewank [31])
of dimensions 𝑑 ∈ {100, 500, 1000}. Both the value
obtained in the last iteration, and the trajectory of the
ϐitness functions improvements are considered – in
certain situations it is desirable to have a relatively
fast convergence earlier, in other situations the focus
is placed on the ϐinal result. The equations used for the
benchmark functions are as follows:
‐ Ackley: 𝑓(𝑥) = −𝑎𝑒−𝑏ට1/𝑛∑

𝑛
𝑖=1(𝑥2𝑖 ) −

𝑒1/𝑛∑𝑛𝑖=1 cos(𝑐𝑥𝑖) + 𝑎 + 𝑒; 𝑎 = 20; 𝑏 = 0.2; 𝑐 =
2𝜋; 𝑖 ∈ [1 ∶ 𝑛]; −32.768 ≤ 𝑥(𝑖) ≤ 32.768. 𝑓(𝑥opt) =
0, 𝑥opt𝑖 = 0.

‐ De Jong: 𝑓(𝑥) = ∑𝑛
𝑖=1 𝑥2𝑖 , 𝑖 ∈ [1, 𝑛]; −5.12 ≤ 𝑥𝑖 ≤

5.12. 𝑓(𝑥opt) = 0, 𝑥opt𝑖 = 0.
‐ Rastrigin:𝑓(𝑥) = 10𝑛+∑𝑛

𝑖=1(𝑥2𝑖 −10 cos(2𝜋𝑥𝑖)), 𝑖 ∈
[1, 𝑛]; −5.12 ≤ 𝑥𝑖 ≤ 5.12. 𝑓(𝑥opt) = 0, 𝑥opt𝑖 = 0.

‐ Griewank: 𝑓(𝑥) = ∑𝑛
𝑥=1 𝑥2𝑖 /4000 − ∏ cos(𝑥𝑖/√𝑖) +

1, 𝑖 ∈ [1, 𝑛]; −600 ≤ 𝑥𝑖 ≤ 600, 𝑓(𝑥opt) = 0,
𝑥opt𝑖 = 0.
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Figure 2. Trajectory of changes of mean fitness function value for Griewank problem and (𝜇 + 𝜆) Evolutionary Strategy,
depending on the number of iterations

The following algorithmshave been benchmarked:
‐ Original (𝜇 + 𝜆) ES,
‐ Follow Best ES – with the Follow Best mutation,
‐ Follow Best Distinct ES – with the Follow Best Dis‐
tinct mutation,

‐ Repel Worst Gravity Multistep ES – with the Repel
Worst Gravity Multistep mutation,

‐ Combo Distinct Gravity ES – with the Follow Best
Distinct and Repel Worst Gravity mutations,

‐ Combo Distinct Gravity Multistep ES – with the Fol‐
low Best Distinct and Repel Worst Gravity Multistep
mutations.
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Figure 3. Trajectory of changes of mean fitness function value for Ackley problem and (𝜇 + 𝜆) Evolutionary Strategy,
depending on the number of iterations

The stopping criteria was reaching maximum
number of iterations of population updates (set as 100
for all the experiments). The number of individuals
in the population was set to 𝜇 = 200. The following
settings have been used for the algorithms:
‐ 𝜇 = 20, 𝜆 = 140.
‐ 𝛼good = 0.1, 𝛼bad = 0.1, 𝛽 = 0.01.
‐ 𝛾 = 1/𝑑, where 𝑑 is the number of dimensions,

‐ number of the currently best orworst individuals: 5.
Each experiment has been repeated 12 times, and the
mean value of the ϐitness function is taken as refer‐
ence. The algorithms have been implemented using
jMetalPy1 computing framework. The source code is
available on request. The computations have been
conducted on a PC‐class computer.
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Figure 4. Trajectory of changes of mean fitness function value for Rastrigin problem and (𝜇 + 𝜆) Evolutionary Strategy,
depending on the number of iterations

Westartwithobservationsof general behavior and
on the repeatability (i.e., consistency of performance
in repeated runs) of the algorithms when solving the
problems for all the variants of the proposed algo‐
rithms. Therefore, we have prepared histogram‐like
visualizations of the computation runs. In Fig. 1, the
actual trajectories of each algorithms can be seen.
Moreover, each vertical slice shows the count of the
values obtained at each iteration of the algorithm for
all repeated experiments.

We can clearly see that all the variants of the mod‐
iϐied (𝜇 + 𝜆) approaches are repeatable. Moreover,
the results obtained for one of biggest problems tack‐
led, namely Ackley in 1000 dimensions can also be
observed in detail. Being convinced of the repeata‐
bility of the experiments we can proceed with subse‐
quent phases of our studies.

Now we can focus on observations of the averages
obtained for all the benchmark problems addressed
with different conϐigurations of the algorithms.
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Figure 5. Trajectory of changes of mean fitness function value for DeJong problem and (𝜇 + 𝜆) Evolutionary Strategy,
depending on the number of iterations

It is clear from observations of the results that
our methods (including the base algorithm) are very
effective in the case of Griewank and Ackley (see
Figs. 2 and 3) problems. Not all our proposedmethods
are effective for De Jong and Rastrigin problem (see
Figs. 5 and 4). For example, the repel worst gravity
approachdoesnot always lead to improvements in

the performance over the base algorithm. This is
not surprising following the main implication of the
well‐known No Free Lunch Theorem by Wolpert and
MacReady [2], in which one of the important steps
would be to optimize the parameters of the search for
each individual problem.
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Table 1.Mean and standard deviation of fitness value after 100 iterations of (𝜇 + 𝜆) ES and its hybrids for 100, 500 and
1000 dim. problems

Dimension 100 500 1000
Mean Std. Mean Std. Mean Std.

Ackley
Base Algorithm 3.37 0.23 7.31 0.26 8.23 0.17
Repel Worst Gravity 3.48 0.13 7.28 0.23 8.20 0.11
Follow Best 2.41 0.33 4.93 0.20 5.54 0.15
Follow Distinct Best 2.45 0.28 4.96 0.15 5.55 0.20
Combo Distinct Gravity 2.65 0.14 5.04 0.20 5.61 0.15
Combo Distinct Gravity Multistep 2.48 0.24 4.79 0.20 5.21 0.22
De Jong
Base Algorithm 26.98 5.57 1474.59 98.64 3977.17 228.07
Repel Worst Gravity 16.93 4.37 1125.72 65.51 3578.57 77.48
Follow Best 5.76 1.63 422.32 53.79 1126.23 99.93
Follow Distinct Best 6.63 2.71 426.64 54.11 1249.48 71.77
Combo Distinct Gravity 2.83 0.49 342.40 24.51 772.03 71.87
Combo Distinct Gravity Multistep 4.31 1.60 240.77 44.30 745.86 59.78
Griewank
Base Algorithm 0.059 0.012 0.63 0.05 1.38 0.07
Repel Worst Gravity 0.070 0.012 0.59 0.06 1.41 0.12
Follow Best 0.016 0.005 0.21 0.02 0.49 0.05
Follow Distinct Best 0.018 0.005 0.23 0.03 0.48 0.05
Combo Distinct Gravity 0.020 0.006 0.25 0.04 0.48 0.07
Combo Distinct Gravity Multistep 0.040 0.007 0.26 0.03 0.42 0.07
Rastrigin
Base Algorithm 281.77 47.09 4471.16 235.14 11040.39 217.55
Repel Worst Gravity 352.57 37.46 4660.73 213.86 11599.90 264.36
Follow Best 239.88 26.33 3303.21 161.68 8418.42 277.27
Follow Distinct Best 213.75 12.47 3197.04 126.73 8320.57 210.38
Combo Distinct Gravity 247.19 27.88 3549.07 62.30 8488.31 296.62
Combo Distinct Gravity Multistep 215.04 24.96 2994.79 149.64 8269.27 322.02

Our motivation for this study is to test the efϐi‐
ciency and efϐicacy of our proposed mechanisms in
their baseline conϐigurations. As such, we have sought
to determine their general capabilities to improve the
reference ES algorithm over the whole set of selected
benchmark problems.

When a particular mechanism did not lead
to improvement but lead to lower average per-
formance for a particular benchmark problem,
results indicate that the difference is not statis-
tically signiϐicant (e.g., Table 2 for Repel Worst
Gravity compared with the base or reference ES
algorithm) on the Griewank Problem at 𝑑 = 1000.
This suggests scope to optimize the parameter con‐
ϐigurations of our proposed mechanisms that war‐
rant further, future studies. In addition to a system‐
atic parameter sweep to ascertain optimal parameter
conϐigurations for the mechanisms, other approaches
would be to apply some dedicated algorithm tuning
method such as iRace [32]. One additional conclusion
of this phase is that the best of our modiϐication was
Combo Dist Gravity along with Repel Best.

In addition to providing qualitative descriptions
of the behaviour of the algorithms is solving the
benchmark problems using graphs, we corroborate

Table 2. Dunn test p‐values of algorithm pairs that
exceeded the 0.01 threshold and are considered not
significantly different

Problem Algorithms p-value

AckleyProblem 100 Follow Distinct Best 0.76Follow Best

AckleyProblem 1000 Repel Worst Gravity 0.26Base Algorithm

AckleyProblem 1000 Follow Distinct Best 0.26Follow Best

DejongProblem 500 Follow Distinct Best 0.087Follow Best

GriewankProblem 1000 Follow Distinct Best 0.022Follow Best

GriewankProblem 1000 Repel Worst Gravity 0.022Base Algorithm

those ϐindings with quantitative results (e.g., average
with standard deviation) that are presented in a tabu‐
lar form.
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These results are provided in Table 1. The observa‐
tions conϐirm the ϐindings perceived when analyzing
the graphs, and the information obtained from the
spread of results when the individual algorithms are
repeated via standard deviation further convinces us
about the repeatability of those algorithms and signif‐
icance of the ϐindings.

We have systematically performed various sta‐
tistical testing on the quantitative results we have
obtained. First, we have applied the Shapiro‐Wilk test
with signiϐicance threshold of 0.05 to check whether
the observed sample had a normal distribution. The
null hypothesis that the sample obtained for each
proposed algorithm is rejected. As such, we pro‐
ceed with the Kruskal‐Wallis test in order to check
whether their cumulative distribution functions dif‐
fered, and ϐinally pairwise comparisons via Dunn’s
test in order to check which ones were signiϐicantly
different. Except for the results listed in Table 2, all
other algorithms achieved statistically signiϐicant val‐
ues with p‐values below 0.01 (assuming this value as
signiϐicance level 𝛼) using Dunn’s test.

5. Conclusion
In this paper, we proposed and studied novel

methods for hybridizing socio‐cognitive inspirations
in ES. The proposed algorithms are based on the prin‐
ciple of introducing certain mechanisms of attracting
the currently modiϐied genotypes to the best ones and
repelling them from the worst ones in the population.

Our experiments yielded interesting results. It
turns out that the proposed mechanisms were appar‐
ently successful for two of four tackled Benchmark
problems (Ackley and Griewank) in all the dimensions
tested. We veriϐied this claim through both qualitative
analysis via plots of the search performances of the
algorithms and quantitative analysis via the use of
systematic statistical analysis on the samples of search
performances from repeated runs of the algorithms.
However, the socio‐cognitive mutation was successful
for the two other problems, namely De Jong and Ras‐
trigin, only in the case of 100 dimensions. It should
be noted that we did not perform individual tun‐
ing of the parameters so as to obtain improvements.
Our current motivation is to establish the generality
of the proposed mechanisms as they are in baseline
conϐiguration.

Nevertheless, we showed that different variants
of our methods succeeded – therefore following the
well‐known No Free Lunch theorem by Wolpert and
MacReady, in our future research we would like to
tune our methods to meet particular needs of all the
tackled problem. Moreover, we will study if our mod‐
iϐication of the base algorithm (in this case, ES) will
work as well when applied in other metaheuristics, as
themodiϐication itself can be perceived as general one,
not particularly connected with ES that is studied in
this paper.

Notes
1https://github.com/jMetal/jMetalPy
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