
Abstract:

1. Introduction

2. S-ACO algorithm

Nowadays, fuzzy logic is one of the most used me-
thods of computational intelligence and with the best fu-
ture; this is possible thanks to the efficiency and simpli-
city of fuzzy systems since they use linguistic terms si-
milar to those that human beings use.

The complexity for developing fuzzy systems can be
found at the time of deciding which are the best para-
meters of the membership functions, the number of rules
or even the best granularity that could give us the best
solution for the problem that we want to solve.

A solution for the above mentioned problem is the
application of evolutionary algorithms for the optimiza-
tion of fuzzy systems. Evolutionary algorithms can be
useful tools since its capabilities of solving nonlinear
problems, well-constrained or even NP-hard problems.
Among the most used methods of evolutionary algo-
rithms we can find: Genetic Algorithms, Ant Colony Opti-
mization, Particle Swarm Optimization, etc.

This paper describes the application of evolutionary
algorithms, such as the Ant Colony Optimization as a me-
thod of optimization of the parameters of the membership
functions of the FLC in order to find the best intelligent
controller for an Autonomous Wheeled Mobile Robot.

This paper is organized as follows: Section 2 shows
the concept of Ant Colony Optimization and a description
of S-ACO, which is the technique that was applied for
optimization. Section 3 presents the problem statement
and the dynamic and kinematic model of the unicycle
mobile robot. Section 4 shows the fuzzy logic controller
proposed and in Section 5 it's described the development
of the evolutionary method. In the Section 6 the simu-
lation results are shown. Finally, Section 7 shows the
conclusions.

Ant Colony Optimization (ACO) is a probabilistic tech-
nique that can be used for solving problems that can be

In this paper we describe the application of a Simple
ACO (S-ACO) as a method of optimization for membership
functions' parameters of a fuzzy logic controller (FLC) in
order to find the optimal intelligent controller for an
Autonomous Wheeled Mobile Robot. Simulation results
show that ACO outperforms a GA in the optimization of FLCs
for an autonomous mobile robot.

Keywords: fuzzy control, ant colony optimization, autono-
mous mobile robots.

reduced to finding good path along graphs. This method
is inspired on the behavior presented by ants in finding
paths from the nest or colony to the food source.

The S-ACO is an algorithmic implementation that
adapts the behavior of real ants to solutions of minimum
cost path problems on graphs [11]. A number of artificial
ants build solutions for a certain optimization problem
and exchange information about the quality of these
solutions making allusion to the communication systems
of the real ants [5].

Let us define the graph , where is the
set of nodes and is the matrix of the links between
nodes. has nodes. Let us define as the
number of hops in the path built by the ant from the
origin node to the destiny node. Therefore, it is necessary
to find:

Where is the set of nodes representing a continuous
path with no obstacles; are former nodes of the
path and is the set of possible configurations of the
free space. If denotes a solution in time ,
expresses the quality of the solution. The general steps of
S-ACO are the followings:

Each link is associated with a pheromone concen-
tration denoted as .
A number are placed in the nest.
On each iteration all ants build a path to the food
source (destiny node). For selecting the next node
a probabilistic equation is used:

(2)

Where, is the set of feasible nodes (in a neigh-
borhood) connected to node with respect to ant ,
is the total pheromone concentration of link , and
is a positive constant used as again for the phero-
mone influence.
Remove cycles and compute each route weight

. A cycle could be generated when there are no
feasible candidates nodes, that is, for any and any ,

; then the predecessor of that node is included
as a former node of the path.
Pheromone evaporation is calculated with equation
(3):

(3)
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Where is the evaporation rate value of the
pheromone trail. The evaporation is added to the
algorithm in order to force the exploration of the
ants, and avoid premature convergence to sub-opti-
mal solutions [11]. For the search becomes
completely random [11].
The update of the pheromone concentration is reali-
zed using equation (4):

(4)

Where is the amount of pheromone that an ant
deposits in a link in a time .
Finally, the algorithm can be ended in three different
ways:
o When a maximum number of epochs have been

reached.
o When it has been found an acceptable solution,

with .
o When all ants follow the same path.
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3. Problem statement
The model of the robot considered in this paper is

a unicycle mobile robot (see Figure 1) that consists of two
driving wheels mounted of the same axis and a front free
wheel.

A unicycle mobile robot is an autonomous, wheeled
vehicle capable of performing missions in fixed or
uncertain environments. The robot body is symmetrical
around the perpendicular axis and the center of mass is at
the geometrical center of the body. It has two driving
wheels that are fixed to the axis that passes through
and one passive wheel prevents the robot from tipping
over as it moves on a plane. In what follows, it's assumed
that motion of the passive wheel could be ignored in the
dynamics of the mobile robot presented by the following
set of equations [8]:

(5)

(6)

Where is the vector of the configuration
coordinates; is the vector of linear and angular
velocities; is the vector of torques applied to

Fig. 1. Wheeled Mobile Robot [10].

1 2

the wheels of the robot where and denote the torques
of the right and left wheel respectively (Figure 1);

uniformly bounded disturbance vector;
is the positive-definite inertia matrix; is

the vector of centripetal and Coriolis forces; and
is a diagonal positive-definite damping matrix. Equation
(6) represents the kinematics of the system, where is
the position of the mobile robot in the X-Y (world) refe-
rence frame, is the angle between heading direction and
the -axis and w are the angular and angular velocities,
respectively.

Furthermore, the system (5)-(6) has the following
non-holonomic constraint:

(7)

which corresponds to a no-slip wheel condition preven-
ting the robot from moving sideways[9]. The system (6)
fails to meet Brockett's necessary condition for feedback
stabilization [2], which implies that anon-continuous
static state-feedback controller exists that stabilizes the
close-loop system around the equilibrium point.

The control objective is to design a fuzzy logic con-
troller of that ensures:

(8)

for any continuously, differentiable, bounded desired tra-
jectory while attenuating external disturbances.

A more detailed description can be found on reference
[10].

In order to satisfy the control objective it is necessary
to design a fuzzy logic controller for the real velocities of
the mobile robot. To do that, a Takagi-Sugeno fuzzy logic
controller was designed, using linguistic variables in the
input and mathematical functions in the output. The
error of the linear and angular velocities ( , res-
pectively), were taken as inputs variables, while the right

and left torques as outputs. The membership func-
tions used on the input are trapezoidal for the negative
( ) and positive ( ), and a triangular was used for the
zero ( ) linguistic terms. The interval used for this fuzzy
controller is [-50 50] [10]. Figure 2 shows the input and
output variables, and Figure 3 shows the general FLC
architecture.

� �

�
�

�

	

�

�

� �

1 2

1 2

F M q

D

x,y

x v

q

v w

N P
C

ext

d

d d

�

�

�

�

2

2 2

2 2

3

( )

( )







4. Fuzzy logic control design

2(a)

2(b)
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Table 2. Parameters of the membership functions.

Table 3. Parameters of the membership functions included
in S-ACO search.

5. ACO architecture
A S-ACO algorithm was applied for the optimization of

the membership functions for the fuzzy logic controller.
For developing the architecture of the algorithm it was
necessary to follow the next steps:

1. Marking the limits of the problem in order to elimi-
nate unnecessary complexity.

2. Representing the architecture of the FLC as a graph
that artificial ants could traverse.

3. Achieving an adequate handling of the pheromone
but permitting the algorithm to evolve by itself.

One of problems found on the development of the
S-ACO algorithm was to make a good representation of
FLC. First we reduced the number of elements that the
method needed to find by deleting the elements whose
minimal value and maximal values are the same (see
Table 2) and therefore if they were included they will not
change any way. Table 3 shows the parameters of the
membership functions included in the search.

The next step was to represent those parameters
shown in table 3; to that, was necessary to discretize the
parameters in a range of possible values in order to repre-
sent every possible value as a node in the graph of search.
The level of discretization between minimal and maximal
value was of 0.1 (by example: -1.5, -1.4, -1.3,…, -0.5).

5.1. Limiting the problem and graph representation

2(c)

2(d)

Fig. 2. a) Linear velocity error; b) Angular velocity error; c)
Right output ( ); d) Left output ( ).

Fig. 3. Fuzzy logic controller architecture.

Table 1.Fuzzy rules set.

� �1 2

1 2 3 4

1 4

The rule set of the FLC contains 9 rules, which governs
the input-output relationship of the FLC and this adopts
the Takagi-Sugeno style inference engine [10], and it is
used with a single point in the outputs, this mind that
the outputs are constant values, obtained using weigh-
ted average defuzzification procedure. In Table 1 we pre-
sent the rule set whose format is established as follows:

Rule : if is and is then is and is

where are the fuzzy set associated to each
variable .

N / N N / C N / P
C / N C / C C / P
P / N P / C P / P

To find the best FLC, we used a S-ACO to find the
parameters of the membership functions. Table 2 shows
the parameters of the membership functions, the
minimal and maximum values in the search range for the
S-ACO algorithm to find the best fuzzy logic controller.

It is important to remark that values shown in Table 2
are applied to both inputs and both outputs of the fuzzy
logic controller.
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MF TYPE

Trapezoidal

Triangular

Trapezoidal

Constant (N)
Constant (C)
Constant (P)

POINT

a
b
c
d
a
b
c
a
b
c
d
a
a
a

MINIMAL
VALUE

-50
-50
-15
-1.5
-5
0

1.8
0.5
5.1
50
50
-50
0
50

MAXIMAL
VALUE

-50
-50
-5.1
-0.5
-1.8
0
5

1.5
15
50
50
-50
0
50

MF TYPE

Trapezoidal

Triangular

Trapezoidal

POINT

c
d
a
c
a
b

MINIMAL
VALUE

-15
-1.5
-5
1.8
0.5
5.1

MAXIMAL
VALUE
-5.1
-0.5
-1.8
5

1.5
15



Table 4 shows the number of possible values that each
parameter can take.

Figure 4 shows the search graph for the proposed
S-ACO algorithm, the graph can be viewed as a tree where
the root is the nest and the last node is the food source.

An important issue is that the update of pheromone
trail be applied in the best way possible. In this sense
we need to handle the evaporation (Equation 3), and in-
crease or deposit of pheromone (Equation 4), where the
key parameter in evaporation is denoted by that
represents the rate of evaporation and in deposit of
pheromone is denoted by that represents the amount
of pheromone that an ant deposits in a link in a time
. For we assign a random value and Equation 9 shows
the way how the increase of pheromone is calculated.

(9)

Where is the maximum error of control permitted
and is error of control generated by a complete path of
an ant . We decided to allocate in order to
stand .

In this section we present the results of the proposed
controller to stabilize the unicycle mobile robot, defined

Table 4. Number of possible values of the parameters of
membership functions.

5.2. Updating Pheromone trail
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6. Simulation results

by Equation (5) and Equation (6), where the matrix
values

and

were taken from [6]. The evaluation was made through
computer simulation performed in MATLAB® and
SIMULINK®.

The desired trajectory is the following one:

(10)

and was chosen in terms of its corresponding desired
linear and angular velocities, subject to the initial
conditions

The gains , of the kinematic model (see
[10]) are and were taken from [10].

Table 5 shows the results of the FLC, obtained varying
the values of maximum iterations and number of artificial
ants, where the highlighted row shows the best result ob-
tained with the method. Figure 5 shows the evolving of
the method.
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6.1. S-ACO algorithm results for
the optimization of the FLC.
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MF TYPE
Trapezoidal

Triangular

Trapezoidal

POINT
c
d
a
c
a
b

COMBINATIONS
100
15
33
33
15
100

Fig. 4. S-ACO architecture.
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Table 5. S-ACO Results of Simulations for FLC optimization.

Fig. 5. Evolution of the S-ACO for FLC optimization

(a)

(b)

Fig. 6. (a) Linear velocity error, and (b) angular velocity
error optimized by S-ACO algorithm.

.

Figure 6 shows the membership functions of the FLC
obtained by S-ACO algorithm.
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Iterations

20
20
25
25
25
25
25
25
25
25
25
25
25
10
10
40
40
40
40
50
50
50
50
25
25
25
25
50
62
50
50
60
60
60

Ants

10
10
10
10
10
10
10
100
100
100
100
100
100
15
15
65
65
65
65
70
70
70
70
80
80
80
80
80
50
80
80
90
90
90

�

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

�

random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random
random

Average
Error

1.5589
1.451
1.5566
1.4767
1.4739
1.6137
1.6642
1.3484
1.3413
1.3360
1.2954
1.4877
1.2391
1.6916
1.4256
1.2783
1.4011
1.2216
1.2487
1.3782
1.0875
1.4218
1.475
1.4718
1.4212
1.3221
1.1391
1.2148
1.0322
1.1887
1.2158
1.3493
1.3060
1.3161

Time

00:01:30
00:01:34
00:01:46
00:01:51
00:02:05
00:02:08
00:01:54
00:20:30
00:18:44
00:18:31
00:18:32
00:18:41
00:18:31
00:01:14
00:01:09
00:19:17
00:19:45
00:19:33
00:19:49
00:26:09
00:27:35
00:33:45
01:08:48
00:14:55
00:15:00
00:14:52
00:15:41
00:28:43
00:24:49
00:29:55
00:29:56
00:41:56
00:39:48
00:40:00

Fig. 7. Block diagram for simulation of the FLC.

Figure 7 shows the block diagram used for the FLC that
obtained the best results.

Figure 8 shows the results of linear and angular errors,
and Figure 9 shows the output results of the fuzzy con-
troller that represents the torque applied to the wheels of
the autonomous mobile robot.
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Fig. 8. Linear and angular velocity errors.

Fig. 9. Right and left torques.

Fig. 10. Position errors in , , .

Fig. 11. Obtained trajectory.

The positions errors of the autonomous mobile robot
can be observed in Figure 10. Figure 11 shows the desired
trajectory and obtained trajectory.

x y 	

7. Conclusions
A trajectory tracking controller has been designed

based on the dynamics and kinematics of the autono-
mous mobile robot through the application of ACO for the
optimization of membership functions for the fuzzy logic
controller with good results obtained after simulations.
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