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Abstract:
This article presents a comparison of a classical approach
to identification of unstable object and an approach
based on artificial neural networks. Model verification
is carried out based on the Quanser Qube‐Servo object
with the use of myRIO real‐time controller as the target.
It is shown that model identification using neural net‐
works gives amore accurate representation of the object.
In addition, the hardware‐in‐the‐loop (HIL) technique is
discussed and used, for implementation of the control
algorithm.
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1. Introduction
Identiϐication involves determining the temporal

behavior of a system or process using measured sig‐
nals, and the temporal behavior is determined within
the classes of mathematical models. The main goal
is to obtain the smallest possible error between
the actual process or system and its mathemati‐
cal model [1]. Modeling by using neural networks,
although more complex, is often more accurate and
allows us to better map the dynamics of the tested
object. One of the basic issues in modeling of a real
object is its validation. This iswhere theHIL technique
comes to the rescue. Hardware‐in‐the‐loop (HIL) sim‐
ulation is a technique for testing embedded systems at
the system level in a comprehensive and cost‐effective
manner. HIL is most often used for development and
testing of embedded systems. A prerequisite for the
use of this technique is that the testing can be accu‐
rately reproducible in the operating environments.
HIL simulation requires a real‐time simulation that
models the individual components of the embedded
system under test (SUT) and all relevant interactions
within a given operating environment. The simulation
monitors the SUT’s output signals and forces syn‐
thetically generated input signals into the SUT at the
appropriate time. The SUT’s output signals are typi‐
cally parameters set on the actuator and information
displayed by the operator. Input signals to the SUT can
include data read from sensors and parameters set
by the operator. Outputs from the embedded system
serve as inputs to the simulation, and the simulation
generates outputs hat become inputs to the embedded
system [2].

2. Inverted Pendulum
The rotating pendulum system is a classic system.

It is most commonly used for teaching modeling and
control. The designations used to model the QUBE‐
Servo rotary pendulum are shown in Figure 1 [3].

The rotary arm attached to the motor axis is
denoted by the variable 𝜃, while the pendulum
attached to the end of the pivot arm is denoted by the
angle 𝛼.

Note the following relationship:
‐ angle 𝛼 is the angle with respect to the vertical
position. Mathematically, this is determined by the
formula:

𝛼 = 𝛼𝑓𝑢𝑙𝑙𝑚𝑜𝑑 2𝜋 − 𝜋, (1)
where 𝛼𝑓𝑢𝑙𝑙 is the angle of the pendulum as mea‐
sured by the encoder;

‐ the movement of both angles is positive if the move‐
ment is counterclockwise (CCW) and applying a pos‐
itive voltage to the motor causes counterclockwise
rotation.
The rotating axis of the arm is connected to the

QUBE‐Servo system.The armhas length𝐿𝑟 ,moment of
inertia 𝐽𝑟 . The servo arm should rotate counterclock‐
wise when the control voltage is positive.

Figure 1.Model conventions of rotary pendulum and
the real plant [3]
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The link of the pendulum is connected to the end
of the rotating arm. Its total length is 𝐿𝑝, and its center
of mass is at the point 𝑙 = 𝐿𝑝

2 . The moment of inertia
with respect to the center of mass is 𝐽𝑝.

The angle𝛼 of the rotary pendulum takes the value
of zero when it is pointed vertically downward. Coun‐
terclockwisemotion results in increasing values of the
rotation angle.

The equations of motion (EOM) for the pendu‐
lum system were developed using the Euler‐Lagrange
method. This method is most often used when mod‐
eling complex systems‐for example, robot manipula‐
tors with multiple joints. This gives the total kinetic
and potential energy of the system under study. Then
the derivatives are calculated to ϐind the equations of
motion. The resulting nonlinear EOMs are [3]:

(𝐽𝑟 + 𝐽𝑝sin𝛼2)�̈� + 𝑚𝑝𝑙𝐿𝑟cos𝛼�̈� + 2𝐽𝑝sin𝛼cos𝛼�̇��̇�

− 𝑚𝑝𝑙𝐿𝑟 sin𝛼�̇�2 = 𝜏 − 𝑏𝑟�̇� (2)

and

𝐽𝑝�̈� + 𝑚𝑝𝑙𝐿𝑟cos𝛼�̈� − 𝐽𝑝sin𝛼cos𝛼�̇�2

+𝑚𝑝𝑔𝑙sin𝛼 = −𝑏𝑝�̇� (3)

where 𝐽𝑟 =
𝑚𝑟𝑟2
3 is themoment of inertia of the rotary

arm with respect to the pivot (i.e. rotary arm axis of
rotation) and 𝐽𝑝 = 𝑚𝑝𝐿2𝑝

3 is the moment of inertia
of the pendulum link with respect to the pendulum’s
axis of rotation (i.e., the pendulum’s axis of rotation).
The viscous damping acting on the pivot arm and the
pendulum link is 𝑏𝑟 and 𝑏𝑝, respectively. The torque
generated by the servomotor at the base of the pivot
arm is

𝜏 = 𝑘𝑚
𝑅𝑚

(𝑣𝑚 − 𝑘𝑚�̇�). (4)

When the nonlinear EOM are linearized about
the operating point, the resultant linear EOM for the
rotary pendulum are deϐined as [3]:

𝐽𝑟�̈� + 𝑚𝑝𝑙𝐿𝑟�̈� = 𝜏 − 𝑏𝑟�̇� (5)

and
𝐽𝑝�̈� + 𝑚𝑝𝑙𝐿𝑟�̈� + 𝑚𝑝𝑔𝑙𝛼= −𝑏𝑝�̇� (6)

Solving for the acceleration terms yields:

�̈� = 1
𝐽𝑡
(𝑚2

𝑝𝑙2𝐿𝑟𝑔𝛼 − 𝐽𝑝𝑏𝑟�̇� + 𝑚𝑝𝑙𝐿𝑟𝑏𝑝�̇� + 𝐽𝑝𝜏) (7)

and

�̈� = 1
𝐽𝑡
(−𝑚𝑝𝑔𝑙𝐽𝑟𝛼 +𝑚𝑝𝑙𝐿𝑟𝑏𝑟�̇� − 𝐽𝑝𝑏𝑝�̇� − 𝑚𝑝𝑙𝐿𝑟𝜏),

(8)
where

𝐽𝑡 = 𝐽𝑝𝐽𝑟 −𝑚2
𝑝𝑙2𝐿𝑟2. (9)

Since we are dealing with nonlinear unstable dynami‐
cal system, the practical identiϐication process ismuch
more complicated.

Figure 2. Quanser Qube‐Servo parameters [3]

In Figure 2, we have Quanser Qube‐Servo parame‐
ters given by the manufacturer.

Using these parameters and EOMs we can write a
linearized model of an object by the following equa‐
tions [6]:

ቊ�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (10)

where

𝑥(𝑡) = [𝜃(𝑡)𝛼(𝑡)�̇�(𝑡)�̇�(𝑡)]𝑇 (11)

𝑦(𝑡) = [𝜃(𝑡)𝛼(𝑡)]𝑇 (12)

and

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 1

0 𝑚2𝑝𝑙2𝐿𝑟𝑔
𝐽𝑡

−𝑏𝑟𝐽𝑝
𝐽𝑡

−𝑚𝑝𝑏𝑝𝑙𝐿𝑟
𝐽𝑡

0 𝑚𝑝𝑙𝐽𝑟𝑔
𝐽𝑡

−𝑚𝑝𝑏𝑟𝑙𝐿𝑟
𝐽𝑡

−𝑏𝑝𝐽𝑟
𝐽𝑡

⎤
⎥
⎥
⎥
⎥
⎦

(13)

𝐵 =
⎡
⎢
⎢
⎢
⎣

0
0
𝐽𝑝
𝐽𝑡𝑚𝑝𝑙𝐿𝑟
𝐽𝑡

⎤
⎥
⎥
⎥
⎦

𝐶 = ቈ1 0 0 0
0 1 0 0 𝐷 = ቈ00 , (14)

where 𝑏𝑟 is equivalent viscous damping coefϐicient
rotary ((N*m*s)/rad), 𝑏𝑝 is equivalent viscous damp‐
ing coefϐicient pendulum ((N*m*s)/rad).

By add actuator dynamics

𝐴(3, 3) = 𝐴(3, 3) − 𝑘2𝑚
𝑅𝑚

∗ 𝐵(3, 1) (15)

𝐴(4, 3) = 𝐴(4, 3) − 𝑘2𝑚
𝑅𝑚

∗ 𝐵(4, 1) (16)

𝐵 = 𝑘𝑚
𝑅𝑚

∗ 𝐵 (17)
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Figure 3. Connection diagram [3]

ultimately we get

𝐴 =
⎡
⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 1.520𝑒 + 02 −12.254 −0.500
0 2.643𝑒 + 02 −12.112 −0.870

⎤
⎥
⎥
⎦

(18)

𝐵 =
⎡
⎢
⎢
⎣

0
0

50.637
50.048

⎤
⎥
⎥
⎦
𝐶 = ቈ1 0 0 0

0 1 0 0𝐷 = ቈ00 . (19)

The pools are the following

⎡
⎢
⎢
⎣

0, 000
15, 672
−16, 943
−0, 957

⎤
⎥
⎥
⎦
, (20)

which conϐirms that the considered system is unsta‐
ble.

3. Real Time Controller
NI myRIO real‐time controller has been used to

manage the Quanser Qube‐Servo object. This con‐
troller is a portable reconϐigurable I/O (RIO) device
that can be used to design control, robotics, and
mechatronics systems [4]. Encoder signals and a
motor control signal were connected to the myRIO.
MATLAB/SIMULINK software has been used as the
development environment along with the Quanser
QUARC add‐on, giving the possibility to control a plant
with the use of real‐time target (QUARC Linux RT
ARMv7 Target). QUARCTM is the most efϐicient way
to create real‐time applications on hardware. QUARC
generates real‐time code directly from drivers pro‐
grammed with Simulink. It runs the program on the
target device in real time [3]. This approach allows
us to compile the code using a PC and then run it
on a real‐time controller (myRIO), which is connected
directly to the plant. When RT Target is started, the PC
is used only for the presentation of process variables.
The connection diagram is shown in Figure 3.

In the discussed task, the following hardware and
software have been used:
‐ Komputer PC
‐ Processor: Intel(R) Core i5‐12600 3,3GHz,
‐ RAM: 32GB,
‐ System: Microsoft Windows 11 Pro

‐ MATLAB Version: 9.11.0.2022996 (R2021b),
‐ SIMULINK version 10.4,
‐ SIMULINK Coder version 9.6,

Figure 4.MATLAB/SIMULINK real time target settings

‐ MATLAB Coder version 5.3.
‐ Quanser QUARC 2021 SP1
‐ NI MyRio‐1900:
‐ Xilinx Z‐7010 processor with 2 cores,
‐ Processor speed is 667MHz.
Full state feedback method has been used to stabi‐

lize the system, and the LQR technique has been used
to determine the matrix K stabilizing the system.

New poles location is the following

⎡
⎢
⎢
⎣

−70
−10
−5
−5

⎤
⎥
⎥
⎦
. (21)

New poles location has been taken based on tests on
real plant. Figure 5 presents the MATLAB/SIMULINK
control schema, where QUARC HIL blocks have been
used. Having the stabilized system at hand, we can
compare step responses of the real plant and the
model created by the use of EOMs and factory data.
The step response of the systems can be seen in Fig‐
ures 6 and 7.

As can be seen, the response of the simulated sys‐
tem (black) and the real object (blue) are not equal,
this is due to a small deviation to one side of pendulum
and rotor (among other factors).

Since the EOMs model is not precise, we will pro‐
ceed with the construction of the neural model. To do
this, it is necessary to record the response of the real
system to a specially prepared input signal. The next
step is to train the network. A nonlinear autoregres‐
sive neural network with external input (NARX) was
selected to train the network. This type of network is
useful to predict time series data. The network had
2 hidden layers, each with 10 neurons. The network
had 10 backward samples of the forcing signal and
10 backward samples of the feedback signal as input
arguments. The signal, which is used to train the net‐
work, is shown in Figure 8.
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Figure 5. Schematic modal control (loop time set for 0.01s)

Figure 6. Rotary Step response

Figure 7. Pendulum step response

4. Modeling Results
Figure 9 shows the schematic program that has

been implemented into the myRIO controller. The
forcing signal from the signal generator is sent to both
the Quanse Qube‐Servo object and the mathematical
and neural model. The responses are then shown in
the Scope window.

During themeasurements, it was necessary to ver‐
ify the loop time of the myRIO controller. Initially this
parameter has been set to 0.01[s]. Figure 10 shows the
actual loop time during the test.

Figure 8. Training signal

Figure 9.Wiring Diagram [3]

Figures 11 and 12 compare rotary and pendu‐
lum responses between measurement, mathematical
model, and Neural‐Networksmodel. In Figures 13 and
14we can see the error between the real object signals
and those generated frommodels.

The performance assessment by the use of inte‐
gral absolute error (IAE) criteria have been given in
Table 1.
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Figure 10. Loop time during the run

Figure 11. Rotary signal comparison

Figure 12. Pendulum signal comparison

Table 1. Integral absolute error criterion

``````````Object
Response

Factory
given
model

Tuned Neural
Networks
model

Pendulum 4.46 1.704
Rotary 14.73 11.73

Figure 13. Rotary error

Figure 14. Pendulum error

5. Concluding Remarks
In the case of the Quanser Qube Servo device, the

pendulum encoder cable acted like a spring pushing
the arm away, thus interferingwith themovements. In
the step response (Figs. 6 and7), it can be seen that the
tilt in each direction is not perfectly symmetrical: this
was related to the mentioned cable. From the error
signals plot, it can be seen that a properly trained net‐
work gives much more accurate results than a mathe‐
matical model. Since the plant is nonlinear, it is crucial
to choose the appropriate testing signal for Neural
Network training.

Using the HIL technique, it is important to remem‐
ber the limitations of the target hardware (in this case,
myRIO). When implementing control algorithms to
target hardware, it is necessary to check real HIL loop
time since it can inϐluence the quality of the control.

Having a good quality mathematical model opens
up a lot of possibilities when designing algorithms to
control an object. For the mathematically determined
model, it is necessary to select the appropriate hard‐
ware gain, which results from the use of electronic
components in the object—for example, an encoder or
a motor.
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