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Abstract:
The stock market is of great importance for the finan‐
cial development of a country due to the large vol‐
ume of transactions therein. Analyzing the correlation
between indices in the world helps us figure out which
variables are most impactful. This paper proposes the
use of ordered weighted average (OWA) operators in
combination with the Pearson coefficient to create a
measure of correlation that can analyze a wide range of
possible scenarios that go from minimum to maximum.
The new frameworks can add additional information to
the process of correlation. The work presents an applica‐
tion in ten of the largest stock exchanges in the world.
The results suggest a broad positive correlation that is
reinforced in times of instability.

Keywords: Stock market, OWA operator, Pearson coeffi‐
cient, Financial development

1. Introduction
The world inancial market is essential in the

development of economic processes since it con‐
tributes to the transfer of inancial lows between
agents. The stock market establishes a close connec‐
tion with the productive sector to the extent that each
country has developed its inancial system [1,2]. In the
last decades, there has been a considerable increase
in the number of transactions and their values in
stock markets. Therefore, many of its aspects have
been investigated to search for knowledge and clarify
the phenomena in the markets. In this sense, issues
such as variables that affect it [3, 4], modeling [5, 6],
forecasting [7, 8], and integrations [9, 10] have been
studied.

Market integration has allowed many of the stock
markets to move in synchrony when fortuitous events
occur, and some indices tend to affect others to a great
extent. Barunik et al. [11] show that in times of insta‐
bility, the correlation of the stock market with other
indicators, such as gold and oil, becomes stronger.
Jung and Chang [12] found that stocks tend to cluster
by Pearson correlation and partial correlation. Intend‐
ing to know the relationship of world stock markets
over time, Wang et al. [13] propose a network‐based
Pearson coef icient to analyze some stock exchanges.

This work proposes a Pearson coef icient with
OWA aggregation operators to analyze world stock
markets. The OWAoperators [14] are a parameterized
family of aggregation operators, whose main charac‐
teristic is the reordering of the attributes that allow an
analysis of multiple scenarios that go from minimum
tomaximum.Oneof themost popular extensions is the
induced operator IOWA [15]. It uses a more complex
reorder using induced variables. For the treatment
of uncertain data, operators with additional vectors
have been proposed. The POWA operator [16] consid‐
ers probability, and the ordered weighted averaging‐
weighted average (OWAWA) [17] operator uses an
extra weighting. Note that all these ideas can be uni‐
ied in a single operator called IPOWAWA [18]. Since
its inception, the OWA operator and its extensions
have been used successfully in statistical procedures
such as regressions issue [19, 20], standard devia‐
tion [21], variance, and covariance [22,23].

This paper uses the IPOWA, IOWAWA, and
IPOWAWA operators in the form of variances and
covariances to calculate the Pearson correlation
coef icient. The newmethodology is called PC‐IPOWA,
PC‐IOWAWA and PC‐IPOWAWA. The main objective
is to obtain a correlation coef icient that, in addition
to considering scenarios that go from minimum to
maximum, can consider probabilities and weights
when environments of uncertainty exist. In order
to ind important information in inancial markets,
we analyze the correlation of some of the most
representative stock exchanges in the world.

The paper is developed as follows: Section 2
presents a summary of the methodologies used. Sec‐
tion 3 shows the new proposed Pearson coef icient
and OWA operators. In Section 4, a generalization of
the new structure is presented. Section 5 develops the
application of the OWA correlation coef icients in the
stock market. Finally, the conclusions of the work are
described in Section 6.

2. Preliminaries
Below is a brief description of the approaches

used in the proposal of this work. The OWA operator,
some of its extensions, and the Pearson coef icient are
de ined.
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2.1. OWA Operator and Extensions

The ordered weighted averaging (OWA) opera‐
tor [14] provides a method to aggregate several argu‐
ments that die between the maximum and mini‐
mum. The main characteristic is the reordering of the
attribute vector that goes fromminimum tomaximum
(AOWA) or frommaximum to minimum (DOWA). The
OWA operator is de ined as follows:

De inition 1. An OWA operator with dimensions n
is a model 𝑂𝑊𝐴∶ 𝑅𝑛 → 𝑅 such that it has associated
weights vector𝑊 thus 𝑤𝑖 =∈ [0, 1] and ∑𝑛

𝑖=1𝑤𝑖 = 1,
then:

𝑂𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) =
𝑛

𝑗=1
𝑤𝑗𝑏𝑗 , (1)

where 𝑏𝑗 is the 𝑗th largest 𝑎𝑖 . The OWA operator is a
mean operator as it satis ies the conditions:
‐ Monotonicity: if 𝑎𝑖 ≥ �̂�𝑖 then 𝐹(𝑎1, … , 𝑎𝑛) ≥
𝐹(�̂�1, … , �̂�𝑛) for 𝑖.

‐ Commutativity: The initial indexing of de arguments
doesn’t matter.

‐ Idempotent: if 𝑎𝑗 = 𝑎 for all j, so 𝐹(𝑎𝑖 , … , 𝑎𝑛) = 𝑎.
If the reordering of the OWA arguments is not con‐

sidered, then we can use induced variables for it. The
induced weighted average operator (IOWA) [15] uses
argument pairs called OWA pairs, with the objective
of inducing an ordering and aggregation of the second
components. It can be de ined as follows:

De inition 2. An IOWA operator is a mapping
𝐼𝑂𝑊𝐴∶ 𝑅𝑛 → 𝑅 of dimension n with an associated
weights vector 𝑊 = [𝑤1, 𝑤2, … , ] wnT, such that
0 ≤ 𝑤𝑖 ≤ 1 and 𝑤𝑖 + ⋯ + 𝑤𝑛 = 1, with an
induced IOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩, where 𝑢𝑖 is the variable
that induced order and 𝑎𝑖 is the argument of the vari‐
able, the formula is as follows:

IOWA(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩) =
𝑛

𝑗=1
𝑤𝑗𝑏𝑗 , (2)

where 𝑏𝑗 is the value 𝑎𝑖 in the IOWA pair that have
the 𝑗th most extensive 𝑢𝑖 . The IOWA operator satis‐
ies the conditions: Monotonicity, Commutativity and
Idempotent.

In practice, probability can be of great importance
to know the characteristics of a current phenomenon.
Merigó [16] proposes the probabilistic OWA (POWA)
operator, which provides a uni ication of the probabil‐
ities and the OWAoperators. It considers the degree of
importance of each one in the aggregation process.

Then:
De inition 3. A POWA operator is a mapping

POWA∶ 𝑅𝑛 → 𝑅 associated with a weight vector 𝑊
where its components lie in the unit interval and sum
to one. Additionally, it has an associated probability
vector 𝑃 with ∑𝑛

𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 ∈ [0, 1], according
to the following equation:

𝑃𝑂𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) =
𝑛

𝑗=1
𝑝𝑗𝑏𝑗 , (3)

where 𝑏𝑗 is the jth largest in 𝑎1, 𝑎2, … , 𝑎𝑛 . There is such
a relationship between probabilities and weights as
�̂�𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑝𝑗 with 𝛽 ∈ [0, 1]. If 𝛽 = 0, the
PA operator appears, and if 𝛽 = 1, the OWA operator
is obtained.

In some cases, the important information in
decision‐making is given by other types of weightings
that can capture different phenomena. The OWAWA
operator was proposed byMerigó [17], and it uses the
OWAoperator andweighted average (WA) in the same
formulation. The de inition is as follows:

De inition 4. An OWAWA operator of dimension n
is a model𝑂𝑊𝐴𝑊𝐴∶ 𝑅𝑛 → 𝑅 associated with a weight
vector 𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑛]𝑇 such that 0 ≤ 𝑤𝑖 ≤
1 and ∑𝑛

𝑖=1𝑤𝑖 = 1. Additionally, it has an associated
weight vector 𝑉 with ∑𝑛

𝑖=1 𝑣𝑖 = 1 and 𝑣𝑖 ∈ [0, 1], so
that:

𝑂𝑊𝐴𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) =
𝑛

𝑗=1
𝑣𝑗𝑏𝑗 , (4)

where 𝑏𝑗 is the jth largest 𝑎𝑖 . The weight vector is
composed as �̂�𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 . The OWAWA
operator has similar properties to the OWA operator.

The POWAoperator andOWAWAoperator can also
use a different reorder of arguments. The IPOWAoper‐
ator [24] and IOWAWAoperator [25] consider induced
variables for the reorder process. The formulas are as
follows:

𝐼𝑃𝑂𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩) =
𝑛

𝑗=1
𝑝𝑗𝑏𝑗 , (5)

where 𝑏𝑗 is the 𝑗th largest value of the 𝑢𝑖 . There is a
weight vector𝑊 such that𝑤𝑖 =∈ [0, 1];𝑤𝑖+⋯+𝑤𝑛 =
1, and a probability vector 𝑃 with ∑𝑛

𝑖=1 𝑝𝑖 = 1;𝑝𝑖 ∈
[0, 1], the degree of importance is �̂�𝑗 = 𝛽𝑤𝑗+(1−𝛽)𝑝𝑗 .

𝐼𝑂𝑊𝐴𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩) =
𝑛

𝑗=1
𝑣𝑗𝑏𝑗 ,

(6)
where𝑏𝑗 is the value𝑎𝑖 in the IOWAwith the 𝑗th largest
𝑢𝑖 . The weight vector considers two vectors 𝑊 such
that 𝑤𝑖 =∈ [0, 1]; 𝑤𝑖 + ⋯ + 𝑤𝑛 = 1, and 𝑉 where
∑𝑛
𝑖=1 𝑣𝑖 = 1;𝑣𝑖 ∈ [0, 1], the degree of importance is

�̂�𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 .
It is possible to put together all the ideas seen

above in one formulation. The IPOWAWA opera‐
tor [18] uni ies the IOWA, the weighted average (WA)
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and the probabilistic aggregation (PA) in one formula‐
tion that can deal with risk and uncertainty. It can be
de ined as follows:

De inition 5.An IPOWAWAoperator of dimension
n is a mapping 𝐼𝑃𝑂𝑊𝐴𝑊𝐴∶ 𝑅𝑛 → 𝑅, if it has two
associated weighting vectorsW and V and probability
vector P, where its components lie in the unit interval
and sum to one.

Additionally, an induced IOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ is con‐
sidered, then:

𝐼𝑃𝑂𝑊𝐴𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= 𝐶1
𝑛

𝑗=1
𝑤𝑗𝑏𝑗 + 𝐶2

𝑛

𝑗=1
𝑣𝑖𝑎𝑖 + 𝐶3

𝑛

𝑗=1
𝑝𝑖𝑎𝑖 , (7)

where 𝑏𝑗 is the value 𝑎𝑖 with the 𝑗th largest 𝑢𝑖 , and 𝐶1,
𝐶2 and 𝐶3 ∈ [0, 1], with 𝐶1 + 𝐶2 + 𝐶3 = 1. The special
cases appear: if 𝐶1 = 1, we get the IOWA operator. If
𝐶2 = 1, theWA is formed. If 𝐶3 = 1, the PA is obtained.
If𝐶1 = 𝑂, we create theprobabilisticweighted average
(PWA).
2.2. Variances and Covariances OWA

The OWA operator has a multidisciplinary appli‐
cation using the idea of weighting and reordering in
other methodologies. The OWA operators with vari‐
ances (Var‐OWA) [26] adapt the arithmetic variance
to a vector of parameterized weights, according to the
following equation:

De inition 6. A variance OWA of dimension n is
a model 𝑂𝑊𝐴∶ 𝑅𝑛 → 𝑅 with an associated weights
vector 𝑊 thus 0≤ 𝑤𝑖 ≤ 1 and ∑𝑛

𝑖=1𝑤𝑖 = 1, then a
variance component𝐷𝑗 = (𝑥𝑖 − 𝜇)2 is associated with
a weight value𝑤𝑗 in the following way:

𝑉𝑎𝑟 − 𝑂𝑊𝐴(𝑎1, … , 𝑎𝑛) =
𝑛

𝑗=1
𝑤𝑗𝐷𝑗 , (8)

where 𝐷𝑗 is the largest of the (𝑥𝑖 − 𝜇)2, 𝜇 is the OWA
operator mean. Meanwhile, the covariance is formu‐
lated using a similar procedure. Merigó [27] proposed
the covariance with OWA operators (Cov‐OWA). So:

De inition 7. A covariance OWA is a model
𝑂𝑊𝐴∶ 𝑅𝑛 → 𝑅 of dimension 𝑛, where there is a
weights vector𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑛]𝑇 thus 0≤ 𝑤𝑖 ≤ 1
and 𝑤𝑖 + ⋯ + 𝑤𝑛 = 1, then the variance component
𝐾𝑗 = (𝑥𝑖 − 𝜇)(𝑦𝑖 − 𝜈) is associated with a weight 𝑤𝑗 .
The formula is as follows:

𝐶𝑜𝑣 − 𝑂𝑊𝐴(𝑋, 𝑌) =
𝑛

𝑗=1
𝑤𝑗𝐾𝑗 , (9)

where 𝐾𝑗 is the 𝑗th largest of the (𝑥𝑖 − 𝜇)(𝑦𝑖 − 𝜈), 𝑥𝑖
is the argument variable of the set of elements 𝑋, 𝑦𝑖
is the argument variable of the set 𝑌. 𝜇 and 𝜈 are the
OWAmeans of X and Y, respectively.

2.3. Pearson Coefficient

A common framework for measuring the linear
relationship between two variables is the Pearson
Correlation (PC) coef icient [28,29]. It can be an index
simple and easy to apply with interesting results in
decision‐making. Then:

De inition 8. It is a PC coef icient if given a set of
variables (𝑥𝑘 , 𝑦𝑘), so the 𝑘 = 1,… , 𝐾∶ 𝑥𝑘 ∈ 𝑈𝑛 , 𝑦𝑘 ∈
𝑈𝑛 , we have a model 𝑓𝜃∶ 𝑅𝑛 → 𝑅. The formula is as
follows:

𝑃𝐶 = 𝐶𝑜𝑣(𝑋, 𝑌)
𝑣𝑎𝑟(𝑋) × 𝑣𝑎𝑟(𝑌)

, (10)

where 𝐶𝑜𝑣(𝑋, 𝑌) is the covariance (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦).
Variance X is (𝑥𝑖 − 𝑥)2. Variance Y is (𝑦𝑖 − 𝑦)2. The 𝑥
and 𝑦 are the arithmetic means.

3. Probabilistic Weighted OWA on Pearson
Correlation
The relationship of two variables can include sev‐

eral aspects that are not captured by the arithmetic
Pearson coef icient. Probability measures the cer‐
tainty with which an event can occur. In this sense, a
Pearson coef icient with probabilistic OWA operators
(PC‐POWA) offers a correlation coef icient that con‐
nects the probability in the calculation of the PC. The
PC‐POWA can be de ined as follows:

Proposition 1. A PC‐POWA of dimension n is a
model 𝑃𝑂𝑊𝐴∶ 𝑅𝑛 → 𝑅 with two sets of variables
𝑥𝑘 ∈ 𝑈𝑛 , 𝑦𝑘 ∈ 𝑈𝑛 that has an associated weighting
vector𝑊 with𝑤𝑗 ∈ [0, 1] and𝑤𝑖 +⋯+𝑤𝑛 = 1. Then:

𝑃𝐶 − 𝑃𝑂𝑊𝐴(𝑎1, … , 𝑎𝑛)

= 𝐶𝑜𝑣 − 𝑃𝑂𝑊𝐴(𝑋, 𝑌)
𝑣𝑎𝑟 − 𝑃𝑂𝑊𝐴(𝑋) × 𝑣𝑎𝑟 − 𝑃𝑂𝑊𝐴(𝑌)

=
∑𝑁
𝐽=1𝑤𝑗(𝑥𝑖 − 𝜇)(𝑦𝑖 − 𝜈),

[∑𝑛
𝑗=1𝑤𝑗(𝑥𝑖 − 𝜇)2][∑𝑛

𝑗=1𝑤𝑗(𝑦𝑖 − 𝜈)2]
,

(11)

where 𝑏𝑗 is the calculation of variances and covari‐
ances jth largest. The components 𝐷𝑗 = (𝑥𝑖 − 𝜇)2 and
𝐾𝑗 = (𝑥𝑖 − 𝜇)(𝑦𝑖 − 𝜈) in variance and covariance have
an associated weight 𝑤𝑗 . The PC‐POWA has the same
proprieties that OWA operators, this is:
‐ Monotonic. If 𝑎𝑖 ≥ �̂�𝑖 then, we have:

𝐹(𝑃𝐶 − 𝑃𝑂𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛))
≥ 𝐹(𝑃𝐶 − 𝑃𝑂𝑊𝐴(�̂�1, �̂�2… , �̂�𝑛)).

‐ Symmetry. If 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛; 𝐴′ = 𝑎′1𝑎′2, … , 𝑎′𝑛 ,
then:

𝐹(𝑃𝐶 − 𝑃𝑂𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛))
= 𝐹(𝑃𝐶 − 𝑃𝑂𝑊𝐴(𝑎′1, 𝑎′2, … , 𝑎′𝑛)).

‐ Idempotent. If 𝑎𝑗 = 𝑎, for all 𝑗 = 1,… , 𝑛, then:

𝐹(𝑃𝐶 − 𝑃𝑂𝑊𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) = 𝑎.
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Example 1. Consider a variable (X = 2,4,6) and a
variable (Y = 5, 8,3), a weight vector (W = 0.3,0.3,0.4)
and a probability vector (P = 0.4,0.4,0.2) and a𝛽 = 0.6.

�̂� = 0.34, 0.34, 0.32

POWAmeans:

𝜇 = (6 × 0.34) + (4 × 0.34) + (2 × 0.32) = 4.04
𝜈 = (8 × 0.34) + (5 × 0.34) + (3 × 0.32) = 5.38

Variances and covariances POWA:

𝑣𝑎𝑟 − 𝑃𝑂𝑊𝐴(𝑋)

= (6 − 4.04)2 + (4 − 4.04)2 + (2 − 4.04)2

= (4.16 × 0.34) + (3.84 × 0.34)
+ (0.001 × 0.32) = 2.72

𝑣𝑎𝑟 − 𝑃𝑂𝑊𝐴(𝑌)

= (8 − 5.04)2 + (5 − 5.04)2 + (3 − 5.04)2

= (6.86 × 0.34) + (5.66 × 0.34)
+ (0.14 × 0.32) = 4.30

𝐶𝑜𝑣 − 𝑃𝑂𝑊𝐴(𝑋, 𝑌)
= [(6 − 4.04)(8 − 5.38)]
+ [(4 − 4.04)(5 − 5.38)]
+ [(2 − 4.04)(3 − 5.38)] = (5.13 × 0.34)
+ (4.85 × 0.34) + (0.01 × 0.32) = 3.40

𝑃𝐶 − 𝑃𝑂𝑊𝐴(𝑎1, … , 𝑎𝑛)

= 3.40
√2.72 × 4.30

= 0.99

Pearson’s coef icient can also be calculated by adding
additional weight vectors where important informa‐
tion about the correlations can be added. The PC‐
OWAWA can analyze the correlations inmore complex
scenarios. It can be de ined as follows:

Proposition 2. A PC‐OWAWA is a mapping
𝑂𝑊𝐴𝑊𝐴∶ 𝑅𝑛 → 𝑅 of dimension n with two sets of
variables 𝑥𝑘; 𝑦𝑘 that has an associated weighting
vector𝑊 with components that lie in the unit interval
and sum to one. The formulation is as follows:

𝑃𝐶 − 𝑂𝑊𝐴𝑊𝐴(𝑎1, … , 𝑎𝑛)

= 𝐶𝑜𝑣 − 𝑂𝑊𝐴𝑊𝐴(𝑋, 𝑌)
𝑣𝑎𝑟 − 𝑂𝑊𝐴𝑊𝐴(𝑋) × 𝑣𝑎𝑟 − 𝑂𝑊𝐴𝑊𝐴(𝑌)

=
∑𝑁
𝐽=1𝑤𝑗(𝑥𝑖 − 𝜇)(𝑦𝑖 − 𝜈),

[∑𝑛
𝑗=1𝑤𝑗(𝑥𝑖 − 𝜇)2][∑𝑛

𝑗=1𝑤𝑗(𝑦𝑖 − 𝜈)2]
,

(12)

where 𝑣𝑎𝑟 − 𝑂𝑊𝐴𝑊𝐴 and 𝐶𝑜𝑣 − 𝑂𝑊𝐴𝑊𝐴 are cal‐
culated as equations ()() by OWAWA operators. The
PC‐OWAWA shares the proprieties on OWA operators:
monotonic, symmetric and idempotent.

It is important to note that the assignment of
weights is an essential point in the OWA aggregation
operators. So, many ways of measuring the degree of
overestimation and underestimation have been pro‐
posed. Yager [30] proposes the degree of orness. This
is, if 𝑤1 = 1, we have a pure “or” operator. The
formulation is obtained as follows:

𝛼(𝑊) =
𝑛

𝑗=1
𝑤∗
𝑗

𝑛 − 𝑗
𝑛 − 1 , (13)

where𝑤∗
𝑗 is the𝑤𝑗 with the 𝑗th largest 𝑎𝑖 value.

Additionally, Yager [30] also shares the entropy of
dispersion, which captures the variability and the use
of the inputs by the weights as follows:

𝐻(𝑊) = −
𝑛

𝑗=1
𝑤𝑗ln(𝑤𝑗). (14)

The balance [31] measures the degree of selec‐
tion between favoring the higher valued elements or
lower‐valued elements, then:

𝐵𝐴𝐿(𝑊) =
𝑛

𝑗−1

𝑛 + 1 − 2𝑗
𝑛 − 1 𝑤𝑗 . (15)

The divergence [32] distinguishes between two
OWAweights vectors, so:

𝐷𝐼𝑉(𝑊) =
𝑛

𝑗=1
𝑤𝑗

𝑛 − 𝑗
𝑛 − 1 − 𝛼(𝑊)

2
. (16)

The vector weight measurement can be used to
calculate the characteristics of the PC‐OWAWA and all
the proposals seen here. In some cases, the relation‐
ship between two variables may be affected by vari‐
ous elements that change values from one moment to
another.

The approaches discussed above can also be
extended to use induced variables. The PC‐IPOWA can
connect the probabilities and the in luence of other
variables on the study into a coef icient of correlation.
The main advantage is that we can analyze situations
in a muchmore complex way as reality can present on
some occasions. It can be de ined as follows:

Proposition 3. A PC‐IPOWA of dimension n is a
model 𝐼𝑃𝑂𝑊𝐴∶𝑅𝑛 → 𝑅with two sets of variables𝑥𝑘 ∈
𝑈𝑛 , 𝑦𝑘 ∈ 𝑈𝑛 that has an associated weighting vector
𝑊 with 𝑤𝑗 ∈ [0, 1] and ∑𝑛

𝑖=1𝑤𝑖 = 1, additionally, an
induced IPOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ and a probability vector
P is considered. The formulation can be de ined as
follows:
𝑃𝐶 − 𝐼𝑃𝑂𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= 𝐶𝑜𝑣 − 𝐼𝑃𝑂𝑊𝐴(𝑋, 𝑌)
𝑣𝑎𝑟 − 𝐼𝑃𝑂𝑊𝐴(𝑋) × 𝑣𝑎𝑟 − 𝐼𝑃𝑂𝑊𝐴(𝑌)

=
∑𝑁
𝐽=1𝑤𝑗(𝑥𝑖 − 𝜇)(𝑦𝑖 − 𝜈),

[∑𝑛
𝑗=1𝑤𝑗(𝑥𝑖 − 𝜇)2][∑𝑛

𝑗=1𝑤𝑗(𝑦𝑖 − 𝜈)2]
,

(17)
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where 𝑏𝑗 is the calculation of variances and covari‐
ances with the jth largest 𝑢1. The 𝜇 and 𝜈 are IPOWA
means.

In this sense, the IOWAWA operator can also be
used to calculate the Pearson coef icient. The PC‐
IOWAWA is a correlation coef icient that combines
some characteristics: 1) induced criteria for reorder‐
ing arguments and 2) an additional weighted vector
that is considered whit the weighted vector OWA. It is
developed as the following de inition:

Proposition 4. A PC‐IOWAWA is a model
𝐼𝑂𝑊𝐴𝑊𝐴∶ 𝑅𝑛 → 𝑅 with two sets of variables 𝑥𝑘; 𝑦𝑘
with two weighting vectors W and V such that both
have 0 ≤ 𝑤𝑖 ≤ 1 and ∑𝑛

𝑖=1𝑤𝑖 = 1, additionally, an
induced IPOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩. So that:

𝑃𝐶 − 𝐼𝑂𝑊𝐴𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= 𝐶𝑜𝑣 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑋, 𝑌)
𝑣𝑎𝑟 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑋) × 𝑣𝑎𝑟 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑌)

=
∑𝑁
𝐽=1𝑤𝑗(𝑥𝑖 − 𝜇)(𝑦𝑖 − 𝜈),

[∑𝑛
𝑗=1𝑤𝑗(𝑥𝑖 − 𝜇)2][∑𝑛

𝑗=1𝑤𝑗(𝑦𝑖 − 𝜈)2]
,

(18)

where 𝑏𝑗 are the calculation of variances and covari‐
ances with the jth largest 𝑢1. The 𝜇 and 𝜈 are IOWAWA
means.

Example 2. Consider the data previously seen: the
variable (X = 2,4,6) and the variable (Y = 5, 8,3), a
weight vector (W = 0.3,0.3,0.4) a weighted vector (V
= 0.2,0.3,0.5), and a 𝛽 = 0.6. Additionally, an induced
vector (U = 10, 15, 12).

�̂� = 0.26, 0.3, 0.44

IOWAWAmeans:

𝜇 = (4 × 0.26) + (6 × 0.3) + (2 × 0.44) = 3.72
𝜈 = (8 × 0.26) + (3 × 0.3) + (5 × 0.44) = 5.18

Variances and covariances IOWAWA:

𝑣𝑎𝑟 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑋)

= (4 − 3.72)2 + (6 − 3.72)2 + (2 − 3.72)2

= (5.19 × 0.26) + (2.95 × 0.3)
+ (0.07 × 0.44) = 2.26

𝑣𝑎𝑟 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑌)

= (8 − 5.18)2 + (3 − 5.18)2 + (5 − 5.18)2

= (4.75 × 0.26) + (0.03 × 0.3)
+ (7.95 × 0.44) = 4.74

𝐶𝑜𝑣 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑋, 𝑌)
= [(4 − 3.72)(8 − 5.18)]
+ [(6 − 3.72)(3 − 5.18)]
+ [(2 − 3.72)(5 − 5.18)]

= (−4.97 × 0.26)
+ (0.30 × 0.3)
+ (0.78 × 0.44) = −0.85

𝑃𝐶 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑎1, … , 𝑎𝑛)

= −0.85
√2.26 × 4.74

= −0.26

One can observe that the results can vary in quan‐
tity and sign when we use induced operators compar‐
ing exercises 1 and 2.

The Pearson coef icient can also consider very
complex scenarios where uncertainty and risk are
present. The PC‐IPOWAWA is a correlation coef icient
that uses induced components, weighted means and
probability to measure the relationship of two vari‐
ables. Within these characteristics, it can collect a
series of factors that affect the variables and prefer‐
ences or probabilities of each data. The PC‐IPOWAWA
can be de ined as follows:

Proposition 5. A PC‐IPOWAWA of dimension n is
a mapping 𝐼𝑃𝑂𝑊𝐴𝑊𝐴∶ 𝑅𝑛 → 𝑅 if it has two sets of
variables 𝑥𝑘; 𝑦𝑘 and three weighting vectors W, P and
V such that have components ranging from zero to one
and the sum is one, so an induced IPOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩
is used. Then:

𝑃𝐶 − 𝐼𝑃𝑂𝑊𝐴𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= Cov− IPOWAWA(𝑋, 𝑌)
var− IPOWAWA(𝑋) × 𝑣𝑎𝑟 − 𝐼𝑃𝑂𝑊𝐴𝑊𝐴(𝑌)

=
∑𝑁
𝐽=1𝑤𝑗(𝑥𝑖 − 𝜇)(𝑦𝑖 − 𝜈),

[∑𝑛
𝑗=1𝑤𝑗(𝑥𝑖 − 𝜇)2][∑𝑛

𝑗=1𝑤𝑗(𝑦𝑖 − 𝜈)2]
, (19)

where 𝜇 and 𝜈 are IPOWAWA means. The component
with the weight 𝑤𝑗 is the one that has the largest 𝑢1.
The weight vector can be calculated as �̂�1 = 𝐶1𝑤1 +
𝐶2𝑝1 + 𝐶3𝑣1, where 𝐶1 + 𝐶2 + 𝐶3 = 1.

Example 3. Consider the data used in previous
examples: the variable (X = 2,4,6) and the variable
(Y = 5, 8,3), a weight vector (W = 0.3,0.3,0.4), proba‐
bility vector (P = 0.4,0.4,0.2) a weighted vector (V =
0.2,0.3,0.5), and a C = 0.3, 0.4, 0.2. The induced vector
is (U = 10, 15, 12).

�̂� = 0.33, 0.35, 0.32

IPOWAWAmeans:

𝜇 = (4 × 0.33) + (6 × 0.35) + (2 × 0.32) = 4.06
𝜈 = (8 × 0.33) + (3 × 0.35) + (5 × 0.32) = 5.29

Variances and covariances IPOWAWA:

𝑣𝑎𝑟 − 𝐼𝑃𝑂𝑊𝐴𝑊𝐴(𝑋)

= (4 − 4.06)2 + (6 − 4.06)2 + (2 − 4.06)2

= (3.76 × 0.33) + (4.24 × 0.35)
+ (0.003 × 0.32) = 2.72
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𝑣𝑎𝑟 − 𝐼𝑃𝑂𝑊𝐴𝑊𝐴(𝑌)

= (8 − 5.29)2 + (3 − 5.29)2

+ (5 − 5.29)2 = (5.24 × 0.33)
+ (0.08 × 0.35) + (7.34 × 0.32) = 4.10

𝐶𝑜𝑣 − 𝐼𝑃𝑂𝑊𝐴𝑊𝐴(𝑋, 𝑌)
= [(4 − 4.06)(8 − 5.29)]
+ [(6 − 4.06)(3 − 5.29)]
+ [(2 − 4.06)(5 − 5.29)]

= (−4.44 × 0.33) + (0.59 × 0.35)
+ (−0.16 × 0.32) = −1.30

𝑃𝐶 − 𝐼𝑃𝑂𝑊𝐴𝑊𝐴(𝑎1, … , 𝑎𝑛)

= −1.30
√2.72 × 4.10

= −0.39

In this case, vector C indicates that the combination of
probability and weights brings us closer to arithmetic
means.

4. Generalized the Induced Pearson
Coefficient
A technique that can be used for complex analysis

and generating additional scenarios is the generalized
or quasi‐arithmetic mean. We can generalize the new
proposals previously seen in the quasi‐PC‐IPOWA, the
quasi‐PC‐IOWAWA, and the quasi‐PC‐IPOWAWA. They
are de ined as follows:

Proposition 6. A quasi‐PC‐IPOWA of dimension n
is amodel 𝐼𝑃𝑂𝑊𝐴∶𝑅𝑛 → 𝑅with a set of variables𝑥𝑘 ∈
𝑈𝑛 and a second set 𝑦𝑘 ∈ 𝑈𝑛 which have an asso‐
ciated weighting vector 𝑊 with 𝑤𝑗 ∈ [0, 1] and
∑𝑛
𝑖=1𝑤𝑖 = 1 and an associated probability vector 𝑃

with ∑𝑛
𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 ∈ [0, 1]. Additionally, an

induced IPOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ is considered. Then:

𝑄𝑢𝑎𝑠𝑖 − 𝑃𝐶 − 𝐼𝑃𝑂𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= 𝑄𝑢𝑎𝑠𝑖 − 𝐶𝑜𝑣 − 𝐼𝑃𝑂𝑊𝐴(𝑋, 𝑌)
𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟 − 𝐼𝑃𝑂𝑊𝐴(𝑋)

×𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟 − 𝐼𝑃𝑂𝑊𝐴(𝑌)

(20)

where the quasi‐variance and covariance IPOWA are
calculated as follows:

𝑣𝑎𝑟𝑄−𝐼𝑃𝑂𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= 𝑔−1
𝑛

𝑗=1
𝑝𝑗𝑔(𝐷𝑗), (21)

𝐶𝑜𝑣𝑄−𝐼𝑃𝑂𝑊𝐴(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= 𝑔−1
𝑛

𝑗=1
𝑝𝑗𝑔(𝐾𝑗), (22)

𝐷𝑗 and 𝐾𝑗 are the variance and covariance with the jth
element with the largest value of 𝑢𝑖; 𝑢𝑖 is the induced
order of variables; 𝑔(𝐷𝑗) and 𝑔(𝐾𝑗) are continuous
strictly monotonic functions.

Proposition 7. A quasi‐PC‐IOWAWA is a mapping
𝐼𝑂𝑊𝐴𝑊𝐴∶𝑅𝑛 → 𝑅with a set of variables 𝑥𝑘 ∈ 𝑈𝑛 and
a set 𝑦𝑘 ∈ 𝑈𝑛 such as an associated weighting vector
𝑊 and a probability vector P, which components are
ranging from zero to one and the sum is one. Addition‐
ally, an induced IPOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ is considered. So:
Quasi− PC− IOWAWA(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= 𝑄𝑢𝑎𝑠𝑖 − 𝐶𝑜𝑣 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑋, 𝑌)
𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑋)

×𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑌)

(23)

where the variances and covariance are calculated in
a quasi‐form as () ().

Proposition8.Aquasi‐PC‐IPOWAWA is amapping
𝐼𝑃𝑂𝑊𝐴𝑊𝐴 ∶ 𝑅𝑛 → 𝑅 with a set of variables 𝑥𝑘; 𝑦𝑘
such as an associated weighting vector 𝑊 with 𝑤𝑗 ∈
[0, 1] and ∑𝑛

𝑖=1𝑤𝑖 = 1, a probability vector 𝑃 with
∑𝑛
𝑖=1 𝑝𝑖 = 1 and weighted vector 𝑉 with ∑𝑛

𝑖=1 𝑣𝑖 = 1
and 𝑣𝑖 ∈ [0, 1]. Additionally, an induced IPOWA pair
⟨𝑢𝑖 , 𝑎𝑖⟩ is considered. The formulation is as follows:
Quasi− PC− IOWAWA(⟨𝑢1, 𝑎1⟩⟨𝑢2, 𝑎2⟩, … , ⟨𝑢𝑛 , 𝑎𝑛⟩)

= 𝑄𝑢𝑎𝑠𝑖 − 𝐶𝑜𝑣 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑋, 𝑌)
𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑋)

×𝑄𝑢𝑎𝑠𝑖 − 𝑣𝑎𝑟 − 𝐼𝑂𝑊𝐴𝑊𝐴(𝑌)

(24)

Additionally, the families of the generalized PC‐
IPOWA, PC‐IOWAWA, and PC‐IPOWAWA operator can
be seen in Tables 1–3.

Table 1. Families of generalized PC‐IPOWA

Particular case Quasi-PC-IPOWA
𝑢𝑖 =

1
𝑛 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 Quasi‐arithmetic Pearson coef icient induced probabilistic ordered weighted (Quasi‐PC‐IPOWA)

𝑔(𝑏) = 𝑏𝜆 Generalized PC‐IPOWA
𝑔(𝑏) = 𝑏 PC‐IPOWA
𝑔(𝑏) = 𝑏2 Pearson coef icient induced probabilistic ordered weighted quadratic average (PC‐IPOWQA)
𝑔(𝑏) → 𝑏𝜆, 𝑓𝑜𝑟 𝜆 → 0 Pearson coef icient induced probabilistic ordered weighted geometric average (PC‐IPOWGA)
𝑔(𝑏) = 𝑏−1 Pearson coef icient induced probabilistic ordered weighted harmonic average (PC‐IPOWHA)
𝑔(𝑏) = 𝑏3 Pearson coef icient induced probabilistic ordered weighted cubic average (PC‐IPOWCA)
𝑔(𝑏) → 𝑏𝜆, 𝑓𝑜𝑟 𝜆 → ∞ Maximum
𝑔(𝑏) → 𝑏𝜆, 𝑓𝑜𝑟 𝜆 → −∞ Minimum
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Table 2. Families of generalized PC‐IOWAWA

Particular case Quasi-PC-IOWAWA
𝑤𝑖 =

1
𝑛 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 Quasi‐arithmetic Pearson coef icient induced ordered weighted averaging‐weighted (Quasi‐PC‐IOWAWA)

𝑔(𝑏) = 𝑏𝜆 Generalized PC‐IOWAWA
𝑔(𝑏) = 𝑏 PC‐IOWAWA
𝑔(𝑏) = 𝑏2 Pearson coef icient induced ordered weighted averaging‐weighted quadratic average(PC‐IOWAWQA)
𝑔(𝑏) → 𝑏𝜆 , 𝑓𝑜𝑟 𝜆 → 0 Pearson coef icient induced ordered weighted averaging‐weighted geometric average (PC‐IOWAWGA)
𝑔(𝑏) = 𝑏−1 Pearson coef icient induced ordered weighted averaging‐weighted harmonic average (PC‐IOWAWHA)
𝑔(𝑏) = 𝑏3 Pearson coef icient induced ordered weighted averaging‐weighted cubic average (PC‐IOWAWCA)
𝑔(𝑏) → 𝑏𝜆 , 𝑓𝑜𝑟 𝜆 → ∞ Maximum
𝑔(𝑏) → 𝑏𝜆 , 𝑓𝑜𝑟 𝜆 → −∞ Minimum

Table 3. Families of generalized PC‐IPOWAWA

Particular case Quasi-PC-IPOWAWA
𝑤𝑖 =

1
𝑛 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 Quasi‐arithmetic Pearson coef icient induced probabilistic ordered weighted averaging‐weighted

(Quasi‐PC‐IPOWAWA)
𝑔(𝑏) = 𝑏𝜆 Generalized PC‐IPOWAWA
𝑔(𝑏) = 𝑏 PC‐IPOWAWA
𝑔(𝑏) = 𝑏2 Pearson coef icient induced probabilistic ordered weighted averaging‐weighted quadratic average

(PC‐IPOWAWQA)
𝑔(𝑏) → 𝑏𝜆 , 𝑓𝑜𝑟 𝜆 → 0 Pearson coef icient induced probabilistic ordered weighted averaging‐weighted geometric average

(PC‐IPOWAWGA)
𝑔(𝑏) = 𝑏−1 Pearson coef icient induced probabilistic ordered weighted averaging‐weighted harmonic average

(PC‐IPOWAWHA)
𝑔(𝑏) = 𝑏3 Pearson coef icient induced probabilistic ordered weighted averaging‐weighted cubic average (PC‐IPOWAWCA)
𝑔(𝑏) → 𝑏𝜆 , 𝑓𝑜𝑟 𝜆 → ∞ Maximum
𝑔(𝑏) → 𝑏𝜆 , 𝑓𝑜𝑟 𝜆 → −∞ Minimum

Table 4. Data analysis

Fecha NYSE NASDAQ Shanghai Hang Seng Nikkei Euronext FTSE BSE S&P-tsx S&P-ASX
dic‐20 14,524.80 12,888.28 3,473.07 27,231.13 27,444.17 1,103.54 6,460.52 47,751.33 17,433.36 6,587.10
nov‐20 14,006.46 12,198.74 3,391.76 26,341.49 26,433.62 1,088.73 6,266.19 44,149.72 17,190.25 6,517.80
oct‐20 12,429.28 10,911.59 3,224.53 24,107.42 22,977.13 930.91 5,577.27 39,614.07 15,580.64 5,927.60
sep‐20 12,701.89 11,167.51 3,218.05 23,459.05 23,185.12 958.98 5,866.10 38,067.93 16,121.38 5,815.90
ago‐20 13,045.60 11,775.46 3,395.68 25,177.05 23,139.76 979.97 5,963.57 38,628.29 16,514.44 6,060.50
jul‐20 12,465.05 10,745.27 3,310.01 24,595.35 21,710.00 954.26 5,897.76 37,606.89 16,169.20 5,927.80
jun‐20 11,893.78 10,058.76 2,984.67 24,427.19 22,288.14 976.54 6,169.74 34,915.80 15,515.22 5,897.90
may‐20 11,802.95 9,489.87 2,852.35 22,961.47 21,877.89 930.25 6,076.60 32,424.10 15,192.83 5,755.70
abr‐20 11,372.34 8,889.55 2,860.08 24,643.59 20,193.69 899.87 5,901.21 33,717.62 14,780.74 5,522.40
mar‐20 10,301.87 7,700.10 2,750.30 23,603.48 18,917.01 858.11 5,671.96 29,468.49 13,378.75 5,076.80
feb‐20 12,380.97 8,567.37 2,880.30 26,129.93 21,142.96 1,021.98 6,580.61 38,297.29 16,263.05 6,441.20
ene‐20 13,614.10 9,150.94 2,976.53 26,312.63 23,205.18 1,120.23 7,286.01 40,723.49 17,318.49 7,017.20

5. Pearson Correlation with OWA Operators in
Stocks Market

Due to the signi icant growth of markets world‐
wide, it is common for turmoil in some inancial
markets to affect others. The impacts of stock mar‐
ket interdependence become clearer in instability
[33–35].

Since Markowitz [36] considers the interdepen‐
dence of markets as a trigger for risk, many studies
have emerged to measure the existing relationship.
In this sense, several studies have been proposed as
the interrelation of markets in emerging economies
[37,38], the relationshipwithotherprices [39,40], and
with economic growth [41,42].

Theyear2020was aperiodof instabilitywhere the
COVID pandemic had a relevant impact onworld stock
markets [43,44]. Given this scenario, it is interesting to
know the correlation observed between some of the
most in luential stock exchanges.

Table 5. vector weights

P W WA
0.10 0.09 0.07
0.10 0.08 0.07
0.09 0.07 0.08
0.09 0.10 0.09
0.09 0.10 0.09
0.08 0.07 0.09
0.08 0.08 0.10
0.08 0.08 0.10
0.08 0.09 0.10
0.08 0.08 0.09
0.07 0.10 0.06
0.06 0.06 0.06

Therefore, this research considers an application
of the methodology of Pearson correlation with OWA
operators in ten of the most extensive stock indexes
in the world. The period studied is from January to
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Table 6. OWA means

Operator NYSE NASDAQ Shanghai Hang Seng Nikkei Euronex FTSE BSE S&P-tsx S&P-ASX
PC‐IPOWA 12,565.84 10,381.15 3,121.33 24,924.19 22,788.05 984.64 6,123.05 38,067.40 15,964.67 6,035.11
PC‐IOWAWA 12,495.84 10,303.48 3,108.35 24,849.42 22,642.42 980.22 6,113.15 37,729.71 15,903.92 6,009.81
PC‐IPOWAWA 12,524.54 10,347.54 3,115.39 24,870.22 22,714.88 981.71 6,112.77 37,869.29 15,924.98 6,017.50

PC 12,544.92 10,295.29 3,109.78 24,915.82 22,709.56 985.28 6,143.13 37,947.09 15,954.86 6,045.66

Table 7. Variances OWA

Operator NYSE NASDAQ Shanghai Hang Seng Nikkei Euronext FTSE BSE Sensex S&P-tsx S&P-ASX
IPOWA 1,253,619.41 2,377,883.41 60,189.55 1,667,143.11 5,435,703.09 6,007.60 168,708.67 23,615,954.13 1,218,042.80 231,782.27
IOWAWA 1,217,761.06 2,296,761.75 59,351.04 1,605,934.35 5,110,951.39 5,820.68 166,414.62 22,705,072.60 1,214,007.37 230,581.58
IPOWAWA 1,241,214.82 2,318,300.05 59,651.30 1,630,779.00 5,271,417.08 5,934.38 167,021.18 23,285,814.35 1,223,214.08 231,049.86

Table 8. Covariances OWA

Index IPOWA IOWAWA IPOWAWA
NYSE‐NASDAQ 1,420,761.60 1,369,462.42 1,397,785.81
NYSE‐Shanghai 223,038.91 217,219.39 220,772.19
NYSE‐Hang Seng 1,090,369.62 1,036,272.22 1,070,034.55
NYSE‐Nikkei 2,449,791.00 2,334,511.16 2,398,855.45
NYSE‐Euronext 78,632.37 76,069.66 77,772.98
NYSE‐FTSE 247,577.71 242,843.97 246,813.95
NYSE‐BSE 5,248,162.50 5,063,720.48 5,180,949.00
NYSE‐SPtsx 1,197,194.21 1,179,006.60 1,195,023.72
NYSE‐SPasx 468,873.66 462,083.56 468,668.54
Nasdaq‐Shanghai 364,482.94 354,667.81 357,444.98
Nasdaq‐HangSeng 828,054.43 764,718.82 816,877.34
Nasdaq‐Nikkei 3,208,890.03 3,044,326.90 3,113,711.73
Nasdaq‐Euronext 65,197.97 62,124.95 64,475.87
Nasdaq‐FTSE 1,473.62 −725.05 6,632.93
Nasdaq‐BSE 6,034,995.70 5,774,961.33 5,936,667.89
Nasdaq‐SPtsx 1,242,778.30 1,218,941.50 1,240,650.40
Nasdaq‐SPasx 344,268.59 336,927.67 348,779.65
Shanghai‐HangSeng 147,431.15 140,688.58 147,218.42
Shanghai‐Nikkei 469,635.10 447,455.62 456,869.96
Shanghai‐Euronext 10,139.66 9,768.71 10,066.92
Shanghai‐FTSE ‐506.87 −845.86 39.18
Shanghai‐BSE 966,632.33 938,312.79 959,113.19
Shanghai‐SPtsx 200,213.34 198,313.27 200,902.78
Shanghai‐SPasx 56,338.32 55,713.49 57,184.98
HangSeng‐NIKKEI 1,925,843.16 1,776,578.12 1,871,784.73
HangSeng‐Eoronext 85,958.32 81,995.21 84,019.34
HangSeng‐FTSE 367,438.98 354,653.40 358,042.91
HangSeng‐BSE 5,055,363.52 4,819,467.72 4,956,712.76
HangSeng‐SPtsx 1,067,432.81 1,028,650.24 1,051,813.62
HangSeng‐Spasx 508,666.96 492,262.43 498,656.48
Nikkei‐Euronext 146,297.86 139,021.48 143,711.23
Nikkei‐FTSE 341,939.13 331,515.95 343,435.07
Nikkei‐BSE 10,471,773.31 9,894,887.23 10,221,837.83
Nikkei‐SPtsx 2,168,373.99 2,097,252.93 2,145,873.09
Nikkei‐SPasx 798,709.21 774,345.84 795,745.22
Euronext‐FTSE 25,901.07 25,434.69 25,670.00
Euronext‐BSE 325,961.07 313,369.57 320,803.36
Euronext‐SPtsx 78,609.13 77,038.87 78,191.75
Euronext‐Spasx 35,878.12 35,268.23 35,625.91
FTSE‐BSE 914,131.76 888,651.46 899,959.46
FTSE‐SPtsx 286,259.84 282,922.94 285,150.85
FTSE‐SPasx 164,744.14 163,239.63 163,107.66
BSE‐SPtsx 4,874,567.26 4,771,972.00 4,849,515.93
BSE‐SPasx 1,929,363.85 1,888,809.62 1,918,687.43
SPtsx‐SPasx 490,978.77 488,863.74 492,055.27
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Table 9. Pearson coefficient with arithmetic means

NYSE NASDAQ Shanghai Hang Seng Nikkei Euronext FTSE BSE S&P- tsx S&P-ASX
NYSE 1 0.787 0.782 0.761 0.930 0.903 0.550 0.962 0.969 0.869
NASDAQ 1 0.960 0.386 0.880 0.488 −0.045 0.787 0.688 0.408
Shanghai 1 0.443 0.807 0.483 −0.042 0.798 0.703 0.429
Hang Seng 1 0.633 0.861 0.691 0.805 0.039 0.818
Nikkei 1 0.787 0.342 0.919 0.831 0.692
Euronext 1 0.827 0.850 0.920 0.964
FTSE 1 0.448 0.646 0.845
BSE 1 0.905 0.811
S&P-tsx 1 0.925
S&P-ASX 1

Table 10. PC‐IPOWA results

NYSE NASDAQ Shanghai Hang Seng Nikkei Euronext FTSE BSE S&P- tsx S&P-ASX
NYSE 1 0.823 0.812 0.754 0.938 0.906 0.538 0.965 0.969 0.870
NASDAQ 1 0.963 0.416 0.893 0.545 0.002 0.805 0.730 0.464
Shanghai 1 0.465 0.821 0.533 −0.005 0.811 0.739 0.477
Hang Seng 1 0.640 0.859 0.693 0.806 0.039 0.818
Nikkei 1 0.810 0.357 0.924 0.843 0.712
Euronext 1 0.814 0.865 0.919 0.961
FTSE 1 0.458 0.631 0.833
BSE Sensex 1 0.909 0.825
S&P- tsx 1 0.924
S&P-ASX 1

Table 11. PC‐IOWAWA results

NYSE NASDAQ Shanghai Hang Seng Nikkei 225 Euronext FTSE BSE S&P- tsx S&P-ASX
NYSE 1 0.819 0.808 0.741 0.936 0.904 0.539 0.963 0.970 0.872
NASDAQ 1 0.961 0.398 0.889 0.537 −0.001 0.800 0.730 0.463
Shanghai 1 0.456 0.812 0.526 −0.009 0.808 0.739 0.476
Hang Seng 1 0.620 0.848 0.686 0.798 0.038 0.809
Nikkei 1 0.806 0.359 0.919 0.842 0.713
Euronext 1 0.817 0.862 0.916 0.963
FTSE 1 0.457 0.629 0.833
BSE Sensex 1 0.909 0.825
S&P- tsx 1 0.924
S&P-ASX 1

Table 12. PC‐IPOWAWA results

NYSE NASDAQ Shanghai Hang Seng Nikkei Euronext FTSE BSE Sensex S&P- tsx S&P-ASX
NYSE 1 0.824 0.811 0.752 0.938 0.906 0.542 0.964 0.970 0.875
NASDAQ 1 0.961 0.420 0.891 0.550 0.011 0.808 0.737 0.477
Shanghai 1 0.472 0.815 0.535 0.000 0.814 0.744 0.487
Hang Seng 1 0.638 0.854 0.686 0.804 0.745 0.812
Nikkei 225 1 0.813 0.366 0.923 0.845 0.721
Euronext 1 0.815 0.863 0.918 0.962
FTSE 1 0.456 0.631 0.830
BSE 1 0.909 0.827
S&P- tsx 1 0.926
S&P-ASX 1

December 2020. The process for obtaining results is
described in the following steps:

Step 1. The data studied are de ined in terms of
index and period.
Step 2. OWA vectors are described. Vectors of
weights, probabilities, and induced.
Step 3. Calculation of OWAmeans.
Step 4. Calculation of variances and covariances
with the different OWA operators.
Step 5. Results. The Pearson correlation with OWA
operators is de ined in the ten stock exchanges.

5.1. The Process in Pearson Correlation with OWAs

In order to analyze the correlation between some
stock exchanges, the following has been carried out:

Step 1. Ten representative indexes of in luential
stock exchanges have been selected: NYSE, NASDAQ,
Hang Seng, Nikkei 225 (Nikkei), Euronext 100
(Euronext), FTS 100 (FTS), BSE Sensex (BSE), S&P‐
tsx, S&Pasx200 (S&P‐asx). The data are monthly for
the year 2020. Table 4 shows the information.

Step 2. OWA weights vectors. To estimate the
means, variances and covariances with the proposed
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Table 13. PC‐IPOWAWA correlations by ranges

0.9 to 1 0.7-0.89 0.5-0-69 0.30-0.49 minor 0.29 and negative
NYSE‐Nikkei NYSE‐NASDAQ NYSE‐FTSE NASDAQ‐Hangseng NASDAQ‐FTSE
NYSE‐Euronext NYSE‐Shanghai NASDAQ‐Euronext NASDAQ‐S&P‐asx Shanghai‐FTSE
NYSE‐BSE NYSE‐Hangseng Shanghai‐Euronext Shanghai‐Hangseng
NYSE‐ S&P‐tsx NNYSE‐S&P‐asx Hangseng‐Nikkei Shanghai‐S&P‐asx
NASDAQ‐Shanghai NASDAQ‐Nikkei Hangseng‐FTSE Nikkei‐FTS
Nikkei‐BSE NASDAQ‐BSE FTSE‐S&P‐tsx FTSE‐BSE
Euronext‐S&P‐tsx NASDAQ‐S&P‐tsx
Euronext‐S&Ptasx Shanghai‐Nikkei
BSE‐S&P‐tsx Shanghai‐BSE
S&Ptxs‐S&P‐asx Shanghai.S&P‐tsx

Hangseng‐Euronext
Hangseng‐BSE

Hangseng‐S&P‐tsx
Hangseng‐S&Ptasx
Nikkei‐Euronext
Nikkei‐S&P‐tsx
Nikkei‐S&P‐asx
Euronext‐FTSE
Euronext‐BSE
FTSE‐S&P‐asx
BSE‐S&P‐asx

OWA extensions, a series of additional vectors are
necessary. The probability vector (P) was established
with a criterion that close values are more likely to
occur. The OWA vector (W) is a random selection.

Theweighted vector (WA)valuedmore themonths
when COVID started. For practical purposes, the
induced vector (I) in each case orders the data by date
from the closest to the furthest. Table 5 shows the
information:

Step 3. The calculation of the correlationwith OWA
operators implies that themeans OWA are considered
to replace the arithmetic means. Table 6 shows the
means OWA of each of the indices.

Step 4.Variances and covariancesOWAcalculation.
Previously seen means are substituted for variances
and covariances. Table 7 shows the variances for each
of the indicators depending on the OWA operator
used.

Note that the IPOWA operator overestimates the
variances. The IOWAWA operator is the one with the
smallest variances, which indicates that themonths of
the start of the covid did not in luence the variation
of the indices until months later. The covariances are
described in Table 8.

The idea about the estimation previously seen
applies the same in the covariances and the chosen
OWA operator.

Step 5. Using the variances and covariances for
each OWAoperator in the Pearson coef icient formula,
the results are obtained. In order to make a compari‐
son with arithmetic calculations, the results are irst
presented without OWA operators. Table 9 shows the
data.

The indiceswith themost correlation areNASDAQ‐
Shanghai, Nikkei‐BSE, NYSE‐BSE, NYSE‐S&P‐tsx,
BSE‐S&P‐tsx, Euronext‐S&P‐asx and S&P‐tsx‐S&P‐asx.
Additionally, there is a negative correlation between

NASDAQ‐FTSE and Shanghai‐FTSE.With these results,
we went on to analyze the information with OWA
operators. Table 10 presents the results of PC‐IPOWA.

Note that when we use probabilities and sub esti‐
mate themonthswithmore variations, the correlation
increases slightly for indiceswith a correlation greater
than 0.9. An interesting issue is that theNASDAQ‐FTSE
correlation turns positive. In the use of the weighted
vector, Table 11 shows the PC‐IOWAWA results.

When a criterion that takes the months of the
onset of COVID into account, the result is very similar
to the arithmetic average. One can observe only a
slight increase in the correlations. Then we connect
the last two proposals and calculate the PC‐IPOWAWA.
Table 12 presents the information.

Note that when a more complex OWA operator is
used, the negative values disappear. However, the cor‐
relations continue to retain similar or slightly higher
values. In order to know to what extent each of the
indices correlates, we place them in different ranges.
Table 13 shows the order.

One can see that the most common correlation of
the indices is between 0.7 to 0.89. Almost 50% of the
correlations are in this range. Only the NASDAQ‐FTSE
and Shanghai‐FTSE correlate less than 0.3. Within the
correlations greater than 0.9, the NYSE correlation
with other indices such as Nikkei, Euronext, BSE, S&P‐
tsx and how these are also strongly related to each
other.

6. Conclusion
Stock markets are essential in developing coun‐

tries, given the number of participants, the move‐
ments, and the variables that cause them to become of
great interest. With the increasing integration of mar‐
kets, it is evident that the indices of stock exchanges
with similar characteristics tend to move together.
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How important is this relationship, and what ques‐
tions that become important for decision‐making in
the inancial area?

This work proposes a Pearson coef icient that
uses OWA aggregation operators in its formulation. In
order to analyze stock indices and other complex data,
induced aggregation operators (IOWA), probabilistic
(IPOWA), andweighted (IOWAWA) are used. Themain
advantage is to obtain a correlation coef icient that can
be overestimated or underestimated by the decision‐
maker according to the information available. In this
sense, the Pearson coef icient results with OWA oper‐
ators can be analyzed in a wide range of scenarios.

The new methodology is applied to ten indices of
major stock exchanges in the world. The main results
show that these indices tend to have a positive correla‐
tion to different degrees. The correlations increase in
timeswhen the variances are higher. In the irst year of
COVID‐19, the correlation between indices increased
slightly. Even correlations that were slightly negative
turnpositivewhen consideringprobability andweight
in the months after the onset of the pandemic. The
highest correlations are found between the indices
NYSE‐Nikkei‐Euronext, BSE, and S&P‐tsx.
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