Fuzzy Switching for Multiple Model Adaptive Control in Manipulator Robot

Behrouz Kharabian, Hosseyn Bolandi, Seyed Majid Smailzadeh, Seyed Kamaledin Mousavi Mashhadi

Submitted: 26th August 2016; accepted: 17th February 2017

DOI: 10.14313/JAMRIS_1-2017/7

Abstract:
In this paper, fuzzy logic is used to perform switching controllers for Multiple Model Adaptive Control (MMAC) in manipulator robot. In the cases which uncertainty bounds of system’s parameters are large, the performance and stability issue of system are considerable concerns. Multiple Model Adaptive Control approach can be useful method to stabilize these kinds of systems. In this control method, the uncertainty bound is divided into several smaller bounds. As a result, the process of stabilization would be streamlined. In this regard, one estimation is obtained for uncertain parameter in every minor bound, and based on estimation errors designed controller can alter. In order to avoid switching controllers and pertinent challenges a summation of controllers with coefficient tuned by fuzzy logic is considered. Simulation results substantiate the efficacy of this method.

Keywords: manipulator robot, fuzzy logic, multiple model adaptive control, switching

1. Introduction

In every system, uncertainty can have different origins like inaccuracy in measurement tools, changes in features of system and other factors related to the nature of system. If uncertainty bounds of system parameters are small, negative effects of uncertainty can be negligible. In contrast, if uncertainty bounds of parameters are large, instability and unacceptable performance can arise. Multiple Model Control approach is an efficacious control method to ameliorated unpleasant influences of uncertainty. In this control approach, the uncertainty bound is divided into multiple bounds and in every bound an estimation is obtained. Estimation errors are used to alter controller and appropriate controller is inserted in closed loop system. Kuipers and Ioannou [1] used conventional MMAC in two-cart most-spring damper system with uncertainty in spring parameter and delay in input signal. Jin and Li [2] utilized MMAC with weighted control signal which used a performance index based on errors of estimation. In this paper, fuzzy logic is used to tune coefficients and controllers. Fuzzy approach as an intelligent control approach has more flexibility and causes controllers’ coefficients to be adjusted based on desires of designer in a way that controller which has low estimation error has more influence on total control signal. In prior weighting method, like what is in [3], excessive gains for corresponding controllers result in having high gain for total control signal. This issue can eventuate in probability of instability. In fuzzy weighing method, membership function of coefficients can be designed so that coefficient of inappropriate controller have less overlap; therefore, appropriate controller has noteworthy effect.

This paper is organized as follows: section 2 describes the dynamic model of manipulator robot. In section 4, fuzzy weighting method is explained. Section 5 includes simulation results. In final, conclusions are rendered in section 6.

2. System Dynamic

In this paper, a two DOF manipulator is considered as system. The first joint is Revolute and the second joint is Prismatic. Figure 1 shows this manipulator. In order to obtain dynamic model of system Lagrangian equation is used.

\[
\begin{align*}
\frac{d}{dt} \frac{\partial E_i}{\partial q_i} - \frac{\partial E_i}{\partial \dot{q}_i} &= \tau_i \\
\frac{d}{dt} \frac{\partial E_2}{\partial \dot{q}_2} - \frac{\partial E_2}{\partial \dot{q}_2} &= \tau_2
\end{align*}
\]

where \((\theta_i, \dot{\theta}_i)\) and \((\dot{\theta}_i, \ddot{\theta}_i)\) are displacement and derivative of displacement in joints. \(E\) is Lagrangian of system. \(\tau\) is exerted torque on joints. Therefore, dynamic equation of system is modeled as:

\[
M(\theta, \dot{\theta}, \ddot{\theta}) + C(\theta, \dot{\theta}, \ddot{\theta}) \ddot{\theta} = \tau
\]

\[
M(\theta, \dot{\theta}) = \begin{bmatrix} m_1 l_1^2 + l_1 + l_2 + m_2 l_2^2 & 0 \\ 0 & m_2 \end{bmatrix}
\]

\[
C(\theta, \dot{\theta}, \ddot{\theta}) = \begin{bmatrix} 2m_2 d_1 \dot{\theta}_1 \ddot{\theta}_1 \\ -m_2 d_2 \dot{\theta}_2 \end{bmatrix}
\]

\[
\tau = \begin{bmatrix} (m_1 l_1^2 + l_1 + l_2 + m_2 d_2^2) \ddot{\theta}_1 + 2m_2 d_1 \dot{\theta}_1 \\ m_2 d_2 \ddot{\theta}_2 - m_2 d_2 \dot{\theta}_2 \end{bmatrix}
\]

where \(M(\theta, \dot{\theta})\) is inertia matrix. \(C(\theta, \dot{\theta}, \ddot{\theta})\) is vector of the cariols and centrifugal force. \(m\) is mass of \(i\)th link. \(l_i\) is inertia tensor of \(i\)th link. \(\dot{\theta}_i\) is rotation of first joint. \(d_i\) is displacement of second joint with respect to first joint. \(l_i\) is distance of mass center of first link from first joint. In this system, uncertainty is presumed to be in \(l_i\).
Multiple Model Adaptive Control

Multiple Model Adaptive Control is a versatile approach to stabilize system with large uncertainty bound. In systems which uncertainty bounds are large, dynamic characteristic of system alters drastically. As a consequence, system is prone to be unstable. In MMAC method uncertainty bounds are divided and in smaller bounds more accurate estimations are obtained. Estimation errors are used to select the controller block related to smallest estimation error and appropriate controller is inserted in closed loop system. Figure 2 depicts the configuration of MMAC.

![Fig 2. Configuration of MMAC](image)

Fig 2. Configuration of MMAC

Sliding mode control is considered as control method. Hence, exerted torque is presented as:

\[\tau_i = s - k_i \text{sat}(s) \]

where \(k_i \) is positive constant which is obtained as

\[k_i(J, f) \geq |\Delta U|, \quad \Delta U = (\dot{\theta} - M)(\gamma_1 \begin{bmatrix} \dot{\theta}_1 \\ \dot{d}_2 \end{bmatrix} + \gamma_2 \begin{bmatrix} \dot{e}_{01} \\ \dot{e}_{02} \end{bmatrix}) \]

\[+ (\dot{\theta} - C) \gamma_1 \begin{bmatrix} \dot{\theta}_1 \\ \dot{d}_2 \end{bmatrix} + (\dot{\theta} - C) \gamma_2 \begin{bmatrix} \dot{e}_{01} \\ \dot{e}_{02} \end{bmatrix} \]

(4)

and \(s \) is sliding surface.

Fuzzy Weighting Method in MMAC

In order to avoid encountering outcomes of switching in MMAC, a summation of weighted controllers is used as pertinent controller instead of switching among several controllers. In this approach, coefficients of controllers are tuned based on estimation errors by means of fuzzy logic. Consequently, total control signal is presented as:

\[\tau_c = \sum_{i=1}^{N} \alpha_i \tau_i \]

(6)

where \(\alpha_i \) is coefficient of \(i \)th controller. The configuration of fuzzy weighting approach is shown in Figure 3.

![Fig 3. Configuration of MMAC with fuzzy weighting approach](image)

Fig 3. Configuration of MMAC with fuzzy weighting approach

Membership functions for estimation errors is shown in Figure 4. Membership functions of controllers’ coefficients are shown in Figure 5. Fuzzy rule is considered as below to tune coefficients of controllers.

– If \(e_{ji} \) is small and \(e_{0j} \) are medium or big, Then \(\alpha_{ji} \) is big and \(\alpha_{0j} \) are small.

In this rule, \(e_{ji} \) is the smallest estimation error, \(e_{ji} \) are other estimation errors, \(\alpha_{ji} \) is the coefficient of controller designed based on uncertain system which is in uncertainty bound with smallest estimation error, and \(\alpha_{0j} \) are other coefficients.

In order to analyze the stability of system by use of this control method energy function is considered as:

\[v(\dot{\theta}_1(t), \dot{d}_2(t)) = \frac{1}{2} \left(\begin{bmatrix} \dot{\theta}_1(t) \\ \dot{d}_2(t) \end{bmatrix} \right)^T M(\theta_1(t), d_2(t)) \left(\begin{bmatrix} \dot{\theta}_1(t) \\ \dot{d}_2(t) \end{bmatrix} \right) \]

(7)
Based on passivity theory for stability proof of the system the following inequality should be vindicated.

\[
\int \begin{bmatrix} \dot{\theta}_1 \\ \dot{d}_2 \end{bmatrix}^T \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} dt \geq \nu(x(t),d_2(t))
\]

(8)

5. Simulation Results

In this paper, manipulator robot is considered whose first joint is Revolute and the second joint is Prismatic. Uncertain parameter of system is length of vector between first joint and center of mass of first link. Dynamic parameters of manipulator robot are presented in Table 1.

<table>
<thead>
<tr>
<th>m_1</th>
<th>m_2</th>
<th>l_1</th>
<th>l_2</th>
<th>l_1</th>
<th>l_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

\(c_1, c_2, \gamma_1, \gamma_2\) are considered as the following matrices and \(k\) according to Equation (4) is obtained.

\[
c_{1,2}, \gamma_{1,2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

The uncertain parameter alters in the following interval.

\[l_{\text{nominal}} - 0.5l_{\text{nominal}} \leq l_1 \leq l_{\text{nominal}} + 0.5l_{\text{nominal}}\]

(9)

Based on designed controller, inequality (8) is vindicated to confirm the stability situation of system as is shown in Figure 6.

Exerted torque as control law causes manipulator robot joints to track the desired trajectories. Figures 7 and 8 show the quality of tracking.

6. Conclusions

In this paper, fuzzy weighting method was used to substitute for switching method in Multiple Model
Adaptive Control. This method provides assurance regarding stable behavior of system with the presence of uncertain parameter with large bound. Fuzzy logic tunes coefficients of designed controllers forming total controller. Consequently, control system eliminates sharp jumps. Simulation results display appropriate outcomes obtained by proposed approach.

AUTHORS
Behrouz Kharabian*, Hosseyn Bolandi, Seyed Majid Smailzadeh and Seyed Kamaledin Mousavi Mashhadi – Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran. E-mail: beh16819@yahoo.com.

*Corresponding author.

REFERENCES